6 research outputs found

    Integrating GPU-accelerated sequence alignment and SNP detection for genome resequencing analysis

    No full text
    DNA sequence alignment and single-nucleotide polymorphism (SNP) detection are two important tasks in genomics research. A common genome resequencing analysis workflow is to first perform sequence alignment and then detect SNPs among the aligned sequences. In practice, the performance bottleneck in this workflow is usually the intermediate result I/O due to the separation of the two components, especially when the in-memory computation has been accelerated, e.g., by graphics processors. To address this bottleneck, we propose to integrate the two tasks tightly so as to eliminate the I/O of intermediate results in the workflow. Specifically, we make the following three changes for the tight integration: (1) we adopt a partition-based approach so that the external sorting of alignment results, which was required for SNP detection, is eliminated; (2) we perform customized compression on alignment results to reduce memory footprint; and (3) we move the computation of a global matrix from SNP detection to sequence alignment to save a file scan. We have developed a GPU-accelerated system that tightly integrates sequence alignment and SNP detection. Our results with human genome data sets show that our GPU-acceleration of individual components in the traditional workflow improves the overall performance by 18 times and that the tight integration further improves the performance of the GPU-accelerated system by 2.3 times. © 2012 Springer-Verlag

    Large scale bioinformatics data mining with parallel genetic programming on graphics processing units

    No full text
    Abstract A suitable single instruction multiple data GP interpreter can achieve high (Giga GPop/second) performance on a SIMD GPU graphics card by simultaneously running multiple diverse members of the genetic programming population. SPMD dataflow parallelisation is achieved because the single interpreter treats the different GP programs as data. On a single 128 node parallel nVidia GeForce 8800 GTX GPU, the interpreter can out run a compiled approach, where data parallelisation comes only by running a single program at a time across multiple inputs. The RapidMind GPGPU Linux C++ system has been demonstrated by predicting ten year+ outcome of breast cancer from a dataset containing a million inputs. NCBI GEO GSE3494 contains hundreds of Affymetrix HG-U133A and HG-U133B GeneChip biopsies. Multiple GP runs each with a population of five million programs winnow useful variables from the chaff at more than 500 million GPops per second. Sources available via FTP.
    corecore