28 research outputs found

    An investigation of the impact of wind speed and turbulence on small wind turbine operation and fatigue loads

    Get PDF
    This paper investigates the operation and loading of a 5 kW HAWT using the aeroelastic code FAST. Wind data from built environment site at Port Kennedy (PK) and from a flat terrain site in Östergarnsholm (OG), are analysed and compared with IEC 61400-2. The longitudinal turbulence intensity (TIu) in the PK wind field was 22%; which was higher than the estimated value in IEC 61400-2 Normal Turbulence Model. The TI in the flat terrain (OG) was below 18% for all mean wind speeds. The selected wind conditions from the two locations were used as input in FAST simulation to investigate the performance and loading of the turbine. The elevated turbulence in PK wind fields increased the output rotor power which was more than that predicted by the standard. Similarly, PK wind field also showed higher blade root flapwise bending moment resulting into twice as much damage load on the turbine blades due to large short-term fluctuations in both wind speed and direction. This value for OG was below the standard's prediction. We observe that the current IEC standard seems inadequate for urban siting of SWTs and requires modification for more reliable deployment in turbulent sites

    The suitability of the IEC 61400-2 wind model for small wind turbines operating in the built environment

    Get PDF
    This paper investigates the applicability of the assumed wind fields in International Electrotechnical Commission (IEC) standard 61400 Part 2, the design standard for small wind turbines, for a turbine operating in the built environment, and the effects these wind fields have on the predicted performance of a 5 kW Aerogenesis turbine using detailed aeroelastic models developed in Fatigue Aerodynamics Structures and Turbulence (FAST). Detailed wind measurements were acquired at two built environment sites: from the rooftop of a Bunnings Ltd. warehouse at Port Kennedy (PK) (Perth, Australia) and from the small wind turbine site at the University of Newcastle at Callaghan (Newcastle, Australia). For both sites, IEC 61400-2 underestimates the turbulence intensity for the majority of the measured wind speeds. A detailed aeroelastic model was built in FAST using the assumed wind field from IEC 61400-2 and the measured wind fields from PK and Callaghan as an input to predict key turbine performance parameters. The results of this analysis show a modest increase in the predicted mean power for the higher turbulence regimes of PK and Callaghan as well as higher variation in output power. Predicted mean rotor thrust and blade flapwise loading showed a minor increase due to higher turbulence, with mean predicted torque almost identical but with increased variations due to higher turbulence. Damage equivalent loading for the blade flapwise moment was predicted to be 58% and 11% higher for a turbine operating at Callaghan and PK respectively, when compared with IEC 61400-2 wind field. Time series plots for blade flapwise moments and power spectral density plots in the frequency domain show consistently higher blade flapwise bending moments for the Callaghan site with both the sites showing a once-per-revolution response

    Gender differences in the insulin-like growth factor axis response to a glucose load94

    No full text
    AIMS: The insulin-like growth factors (IGFs) are thought to contribute to glucose homeostasis. The aim of our study was to examine the response of the IGFs and their binding proteins to an intravenous load of glucose in a cohort of young men and women with normal glucose tolerance. METHODS: The intravenous glucose tolerance test (IVGTT) was used to quantify insulin sensitivity and insulin secretion in 160 adults aged 20-21 years in Adelaide, Australia. Serum IGF-I, IGF-II, IGF-binding protein (IGFBP)-1 and IGFBP-3 were measured during the IVGTT. RESULTS: Women were less insulin sensitive than men with higher fasting insulin (women 55.6 +/- 4.4, men 44.1 +/- 3.6 pmol L(-1), P = 0.001) and first phase insulin secretion (women 3490 +/- 286, men 3038 +/- 271 pmol L(-1) min, P = 0.042). Women showed lower fasting free IGF-I (women 0.29 +/- 0.02, men 0.36 +/- 0.02 mug L(-1), P = 0.004) but higher IGFBP-3 (women 46.3 +/- 0.53, men 43.3 +/- 0.58 mg dL(-1), P = 0.001) and higher IGFBP-1 concentrations (women 37.0 +/- 2.9, men 24.8 +/- 2.3 mug L(-1), P = 0.012). IGFBP-1 fell by 5 min and remained suppressed. IGFBP-3 and total IGF-I fell until 60 min rising again by 2 h. IGF and IGFBP values were all higher in women. IGFBP-1 showed a negative association with fasting and stimulated insulin concentrations in both genders. First phase insulin secretion however showed positive correlations with IGFBP-3 (r = 0.321, P = 0.004) and IGF-I (r = 0.339 P = 0.002) in men but not women. CONCLUSION: Our data show that IGFBP-1, IGFBP-3 and IGF-I show acute changes following a glucose load and there are marked gender differences in these response
    corecore