8 research outputs found

    Multimodality registration without a dedicated multimodality scanner

    No full text
    Multimodality scanners that allow the acquisition of both functional and structural image sets on a single system have recently become available for animal research use. Although the resultant registered functional/structural image sets can greatly enhance the interpretability of the functional data, the cost of multimodality systems can be prohibitive, and they are often limited to two modalities, which generally do not include magnetic resonance imaging. Using a thin plastic wrap to immobilize and fix a mouse or other small animal atop a removable bed, we are able to calculate registrations between all combinations of four different small animal imaging scanners (positron emission tomography, single-photon emission computed tomography, magnetic resonance, and computed tomography [CT]) at our disposal, effectively equivalent to a quadruple-modality scanner. A comparison of serially acquired CT images, with intervening acquisitions on other scanners, demonstrates the ability of the proposed procedures to maintain the rigidity of an anesthetized mouse during transport between scanners. Movement of the bony structures of the mouse was estimated to be 0.62 mm. Soft tissue movement was predominantly the result of the filling (or emptying) of the urinary bladder and thus largely constrained to this region. Phantom studies estimate the registration errors for all registration types to be less than 0.5 mm. Functional images using tracers targeted to known structures verify the accuracy of the functional to structural registrations. The procedures are easy to perform and produce robust and accurate results that rival those of dedicated multimodality scanners, but with more flexible registration combinations and while avoiding the expense and redundancy of multimodality systems

    Reproducibility of intratumor distribution of (18)f-fluoromisonidazole in head and neck cancer

    No full text
    Hypoxia is one of the main causes of the failure to achieve local control using radiotherapy. This is due to the increased radioresistance of hypoxic cells. (18)F-fluoromisonidazole ((18)F-FMISO) positron emission tomography (PET) is a noninvasive imaging technique that can assist in the identification of intratumor regions of hypoxia. The aim of this study was to evaluate the reproducibility of (18)F-FMISO intratumor distribution using two pretreatment PET scans. METHODS AND MATERIALS: We enrolled 20 head and neck cancer patients in this study. Of these, 6 were excluded from the analysis for technical reasons. All patients underwent an (18)F-fluorodeoxyglucose study, followed by two (18)F-FMISO studies 3 days apart. The hypoxic volumes were delineated according to a tumor/blood ratio >or=1.2. The (18)F-FMISO tracer distributions from the two (18)F-FMISO studies were co-registered on a voxel-by-voxel basis using the computed tomography images from the PET/computed tomography examinations. A correlation between the (18)F-FMISO intensities of the corresponding spatial voxels was derived. RESULTS: A voxel-by-voxel analysis of the (18)F-FMISO distributions in the entire tumor volume showed a strong correlation in 71% of the patients. Restraining the correlation to putatively hypoxic zones reduced the number of patients exhibiting a strong correlation to 46%. CONCLUSION: Variability in spatial uptake can occur between repeat (18)F-FMISO PET scans in patients with head and neck cancer. Blood data for one patient was not available. Of 13 patients, 6 had well-correlated intratumor distributions of (18)F-FMISO-suggestive of chronic hypoxia. More work is required to identify the underlying causes of changes in intratumor distribution before single-time-point (18)F-FMISO PET images can be used as the basis of hypoxia-targeting intensity-modulated radiotherapy

    Etiology of Thyroid Cancer

    No full text

    Full bibliography

    No full text
    corecore