684 research outputs found

    First-principles study of stability and vibrational properties of tetragonal PbTiO_3

    Full text link
    A first-principles study of the vibrational modes of PbTiO_3 in the ferroelectric tetragonal phase has been performed at all the main symmetry points of the Brillouin zone (BZ). The calculations use the local-density approximation and ultrasoft pseudopotentials with a plane-wave basis, and reproduce well the available experimental information on the modes at the Gamma point, including the LO-TO splittings. The work was motivated in part by a previously reported transition to an orthorhombic phase at low temperatures [(J. Kobayashi, Y. Uesu, and Y. Sakemi, Phys. Rev. B {\bf 28}, 3866 (1983)]. We show that a linear coupling of orthorhombic strain to one of the modes at Gamma plays a role in the discussion of the possibility of this phase transition. However, no mechanical instabilities (soft modes) are found, either at Gamma or at any of the other high-symmetry points of the BZ.Comment: 8 pages, two-column style with 3 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#ag_pbt

    The large-N(c) nuclear potential puzzle

    Full text link
    An analysis of the baryon-baryon potential from the point of view of large-N(c) QCD is performed. A comparison is made between the N(c)-scaling behavior directly obtained from an analysis at the quark-gluon level to the N(c)-scaling of the potential for a generic hadronic field theory in which it arises via meson exchanges and for which the parameters of the theory are given by their canonical large-N(c) scaling behavior. The purpose of this comparison is to use large-N(c) consistency to test the widespread view that the interaction between nuclei arises from QCD through the exchange of mesons. Although at the one- and two-meson exchange level the scaling rules for the potential derived from the hadronic theory matches the quark-gluon level prediction, at the three- and higher-meson exchange level a generic hadronic theory yields a potential which scales with N(c) faster than that of the quark-gluon theory.Comment: 17 pages, LaTeX, 5 figure

    Efficient Resolution of Anisotropic Structures

    Get PDF
    We highlight some recent new delevelopments concerning the sparse representation of possibly high-dimensional functions exhibiting strong anisotropic features and low regularity in isotropic Sobolev or Besov scales. Specifically, we focus on the solution of transport equations which exhibit propagation of singularities where, additionally, high-dimensionality enters when the convection field, and hence the solutions, depend on parameters varying over some compact set. Important constituents of our approach are directionally adaptive discretization concepts motivated by compactly supported shearlet systems, and well-conditioned stable variational formulations that support trial spaces with anisotropic refinements with arbitrary directionalities. We prove that they provide tight error-residual relations which are used to contrive rigorously founded adaptive refinement schemes which converge in L2L_2. Moreover, in the context of parameter dependent problems we discuss two approaches serving different purposes and working under different regularity assumptions. For frequent query problems, making essential use of the novel well-conditioned variational formulations, a new Reduced Basis Method is outlined which exhibits a certain rate-optimal performance for indefinite, unsymmetric or singularly perturbed problems. For the radiative transfer problem with scattering a sparse tensor method is presented which mitigates or even overcomes the curse of dimensionality under suitable (so far still isotropic) regularity assumptions. Numerical examples for both methods illustrate the theoretical findings

    Resistivity of a Metal between the Boltzmann Transport Regime and the Anderson Transition

    Full text link
    We study the transport properties of a finite three dimensional disordered conductor, for both weak and strong scattering on impurities, employing the real-space Green function technique and related Landauer-type formula. The dirty metal is described by a nearest neighbor tight-binding Hamiltonian with a single s-orbital per site and random on-site potential (Anderson model). We compute exactly the zero-temperature conductance of a finite size sample placed between two semi-infinite disorder-free leads. The resistivity is found from the coefficient of linear scaling of the disorder averaged resistance with sample length. This ``quantum'' resistivity is compared to the semiclassical Boltzmann expression computed in both Born approximation and multiple scattering approximation.Comment: 5 pages, 3 embedded EPS figure

    Constraints from TcT_c and the isotope effect for MgB2_2

    Full text link
    With the constraint that Tc=39T_c = 39 K, as observed for MgB2_2, we use the Eliashberg equations to compute possible allowed values of the isotope coefficient, ÎČ\beta. We find that while the observed value ÎČ=0.32\beta= 0.32 can be obtained in principle, it is difficult to reconcile a recently calculated spectral function with such a low observed value

    Ground State and Quasiparticle Spectrum of a Two Component Bose-Einstein Condensate

    Full text link
    We consider a dilute atomic Bose-Einstein condensate with two non-degenerate internal energy levels. The presence of an external radiation field can result in new ground states for the condensate which result from the lowering of the condensate energy due to the interaction energy with the field. In this approach there are no instabilities in the quasiparticle spectrum as was previously found by Goldstein and Meystre (Phys. Rev. A \QTR{bf}{55}, 2935 (1997)).Comment: 20 pages, 2 figures RevTex. Submitted to Phys. Rev. A; Revised versio

    First-Principles Calculation of the Superconducting Transition in MgB2 within the Anisotropic Eliashberg Formalism

    Full text link
    We present a study of the superconducting transition in MgB2 using the ab-initio pseudopotential density functional method and the fully anisotropic Eliashberg equation. Our study shows that the anisotropic Eliashberg equation, constructed with ab-initio calculated momentum-dependent electron-phonon interaction and anharmonic phonon frequencies, yields an average electron-phonon coupling constant lambda = 0.61, a transition temperature Tc = 39 K, and a boron isotope-effect exponent alphaB = 0.31 with a reasonable assumption of mu* = 0.12. The calculated values for Tc, lambda, and alphaB are in excellent agreement with transport, specific heat, and isotope effect measurements respectively. The individual values of the electron-phonon coupling lambda(k,k') on the various pieces of the Fermi surface however vary from 0.1 to 2.5. The observed Tc is a result of both the raising effect of anisotropy in the electron-phonon couplings and the lowering effect of anharmonicity in the relevant phonon modes.Comment: 4 pages, 3 figures, 1 tabl

    Correlated electron emission in laser-induced nonsequence double ionization of Helium

    Full text link
    In this paper, we have investigated the correlated electron emission of the nonsequence double ionization (NSDI) in an intense linearly polarized field. The theoretical model we employed is the semiclassical rescattering model, the model atom we used is the helium. We find a significant correlation between magnitude and direction of the momentum of two emission electrons, and give a good explanation for this striking phenomenon by observing the classical collisional trajectories. We argue that this correlation phenomenon is universal in NSDI process, as revealed by the recent experiment on the argon.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev.

    Weighing the Evidence of Efficacy of Oral PrEP for HIV Prevention in Women in Southern Africa

    Get PDF
    As oral tenofovir-based regimens for preexposure prophylaxis (PrEP) are adopted as standard of care for HIV prevention, their utilization in clinical trials among women in southern Africa will require an accurate estimate of oral PrEP efficacy in this population. This information is critical for women in choosing this prevention strategy, and in public health policy making. Estimates of the efficacy of oral PrEP regimens containing tenofovir have varied widely across trials that enrolled women, with some studies reporting high efficacy and others reporting no efficacy. Although poor adherence is strongly associated with lack of efficacy, other factors, such as mode of transmission (sexual vs. parenteral), predominant HIV subtype (C vs. non-C), intensity of exposure, and percentage of stable serodiscordant couples, may also contribute to the variation in efficacy estimates. In this article, we evaluate the evidence for PrEP efficacy in women and propose potential explanations for the observed differences in efficacy among studies. Our review emphasizes the need to continue to refine estimates of efficacy and effectiveness of tenofovir-based oral PrEP so as to best develop the next generation of HIV prevention tools, and to inform public policies directed toward HIV prevention

    Momentum state engineering and control in Bose-Einstein condensates

    Full text link
    We demonstrate theoretically the use of genetic learning algorithms to coherently control the dynamics of a Bose-Einstein condensate. We consider specifically the situation of a condensate in an optical lattice formed by two counterpropagating laser beams. The frequency detuning between the lasers acts as a control parameter that can be used to precisely manipulate the condensate even in the presence of a significant mean-field energy. We illustrate this procedure in the coherent acceleration of a condensate and in the preparation of a superposition of prescribed relative phase.Comment: 9 pages incl. 6 PostScript figures (.eps), LaTeX using RevTeX, submitted to Phys. Rev. A, incl. small modifications, some references adde
    • 

    corecore