111 research outputs found

    New constrains on the thickness of the Semail Ophiolite in the Northern Emirates

    Get PDF
    Near-critical angle and refraction studies were performed at IFP as piggyback studies during a wider programme of crustal imagery operated by WesternGeco on behalf of the Ministry of Energy of the United Arab Emirates. The main objective is to illuminate the base of the Semail Ophiolite along part of a regional transect (D1) crossing the Northern Emirates from the Gulf of Oman in the east up to the Arabian Gulf in the west. Results confirm that the sole thrust of the ophiolite has been folded during the Miocene stacking of the underlying Arabian Platform. The thickness of the ophiolite grades from zero in the core of the Masafi tectonic window, up to a maximum of 1.7 km below the axial part of a successor basin which has been preserved on top of the serpentinite west of the current exposure of the main ultramafic bodies. Apatite grains extracted from plagiogranites of the Semail ophiolite also provide evidences for an early unroofing of the gabbros and plagiogranites during the Late Cretaceous, with cooling ages of 72-76 Ma at the top of the ophiolite in the east (not far from the Fujairah coast line), which are coeval and also consistent with the occurrence of Late Cretaceous paleo-soils, rudists and paleo-reef deposits on top of serpentinized ultramafics in the west. Younger cooling ages of 20 Ma have been also found at the base of the ophiolite near Masafi, in the core of the nappe anticline, thus providing a Neogene age for the refolding of the allochthon and stacking of underlying parautochthonous platform carbonate units. These results, together with the occurrence of a thick sedimentary pile illuminated below the metamorphic sole along the north-trending, strike-profile D2 running parallel to the axis of the Masafi window, should stimulate a renewal of the exploration in the central part of the Emirate foothills, where the ophiolite thickness is currently limited, and was already drastically reduced by the end of its Late Cretaceous obduction. © 2010 Saudi Society for Geosciences

    Unravelling a long-term multi-event thermal record in the cratonic interior of southern Finland through apatite fission track termochronology

    No full text
    Apatite fission track thermochronology (AFTT) has been applied to the Precambrian basement rocks of southern Finland in an attempt to detect within the long-term thermal history, thermal manifestations in the cratonic interior of tectonic events at the craton margin. The likely subtle magnitude of these manifestations means that AFTT is a useful technique for such a study due to its low temperature sensitivity. A total of 10 samples have been analysed, generating AFTT ages, length statistics and thermal models. Ages range from 313 ± 22 to 848 ± 60 Ma and mean track lengths range from 11.0 ± 1.6 to 13.3 ± 1.8 μm. The data suggests the presence of thermal overprinting of an earlier cooling event. Thermal modelling produces similar results for all samples and typically contains the following major events: (1) two phases of Late-Proterozoic cooling, (2) Late-Silurian re-heating, (3) Cenozoic cooling. The first phase of Late-Proterozoic cooling is interpreted to be due to aulacogen inversion as a result of stress propagation from the collisional tectonics of the Sveconorwegian orogeny. The second phase is discussed in relation to passive margin formation and possible asthenospheric diaper induced relief and exhumation. The Late-Silurian re-heating coincides in time with a proposed Caledonian foreland basin. The Cenozoic cooling is interpreted to represent the latest exposure resulting from North Atlantic Margin formation induced uplift and associated denudation. © 2004 Published by Elsevier Ltd

    ISES self evaluation report 1999 - 2003

    No full text
    • …
    corecore