13 research outputs found

    Lipopolysaccharide enhances FcγR-dependent functions in vivo through CD11b/CD18 up-regulation

    No full text
    Fc receptors for immunoglobulin G (IgG) (FcγR) mediate several defence mechanisms in the course of inflammatory and infectious diseases. In Gram-negative infections, cellular wall lipopolysaccharides (LPS) modulate different immune responses. We have recently demonstrated that murine LPS in vivo treatment significantly increases FcγR-dependent clearance of immune complexes (IC). In addition, we and others have reported the induction of adhesion molecules on macrophages and neutrophils by LPS in vivo and by tumour necrosis factor-α (TNF-α) in vitro. The aim of this paper was to investigate CD11b/CD18 participation in LPS enhancing effects on Fcγ-dependent functionality of tissue macrophages. Our results have demonstrated that LPS can enhance antibody-dependent cellular cytotoxicity (ADCC) and IC-triggered cytotoxicity (IC-Ctx), two reactions which involve the Fcγ-receptor but different lytic mechanisms. In vitro incubation of splenocytes from LPS-treated mice with anti-CD11b/CD18 abrogated ADCC and IC-Ctx enhancement, without affecting FcγR expression. Similar results were obtained with physiological concentrations of fibrinogen. In this way cytotoxic values of LPS-splenocytes decreased to the basal levels of control mice. Time and temperature requirements for such inhibition strongly suggested that anti-CD11b/CD18 could modulate intracellular signals leading to downregulation of FcγR functionality. Data presented herein support the hypothesis that functional and/or physical associations between integrins and FcγR could be critical for the modulation of effector functions during an inflammatory response

    Geldanamycin Treatment Ameliorates the Response to LPS in Murine Macrophages by Decreasing CD14 Surface Expression

    No full text
    Geldanamycin (GA) is an antibiotic produced by Actinomyces, which specifically inhibits the function of the heat shock protein 90 family. Treatment of a murine macrophage cell line (J774) with GA resulted in a reduced response to Escherichia coli lipopolysaccharide (LPS) as visualized by a decrease of NF-κB translocation into the nucleus and secretion of tumor necrosis factor α (TNF-α). To elucidate the mechanism of this effect, the expression of CD14, the formal LPS receptor, was analyzed. Cells treated with GA showed a reduced level of surface CD14 detected by immunostaining, whereas the expression of other surface receptors, such as FC-γ receptor and tumor necrosis factor receptors (TNF-R1 and TNF-R2), was unaffected. The reduced surface level of CD14 was not due to a reduction in its expression because CD14 steady state mRNA levels or the total cellular pool of CD14 was not altered by GA treatment. Surface CD14 was more rapidly internalized after GA treatment (2–3 h) than after incubation with cycloheximide. Immunostaining of permeabilized cells after GA treatment revealed a higher intracellular content of CD14 colocalizing with calnexin, an endoplasmic reticulum (ER) protein. These results suggest that the decrease in CD14 surface expression after GA treatment is due to rapid internalization without new replacement. These effects may be due to the inhibition of Hsp90 and Grp94 by GA in macrophages

    Gamma-Ray Burst Progenitors

    No full text
    corecore