942 research outputs found
Defining the Roles of Pyruvate Oxidation, TCA Cycle, and Mannitol Metabolism in Methicillin-Resistant Staphylococcus aureus Catheter-Associated Urinary Tract Infection
Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of complicated urinary tract infection (UTI) associated with the use of indwelling urinary catheters. Previous reports have revealed host and pathogen effectors critical for MRSA uropathogenesis. Here, we sought to determine the significance of specific metabolic pathways during MRSA UTI. First, we identified four mutants from the Nebraska transposon mutant library in the MRSA JE2 background that grew normally in rich medium but displayed significantly reduced growth in pooled human urine (HU). This prompted us to transduce the uropathogenic MRSA 1369 strain with the transposon mutants in sucD and fumC (tricarboxylic acid [TCA] cycle), mtlD (mannitol metabolism), and lpdA (pyruvate oxidation). Notably, sucD, fumC, and mtlD were also significantly upregulated in the MRSA 1369 strain upon exposure to HU. Compared to the WT, the MRSA 1369 lpdA mutant was significantly defective for (i) growth in HU, and (ii) colonization of the urinary tract and dissemination to the kidneys and the spleen in the mouse model of catheter-associated UTI (CAUTI), which may be attributed to its increased membrane hydrophobicity and higher susceptibility to killing by human blood. In contrast to their counterparts in the JE2 background, the sucD, fumC, and mtlD mutants in the MRSA 1369 background grew normally in HU; however, they displayed significant fitness defects in the CAUTI mouse model. Overall, identification of novel metabolic pathways important for the urinary fitness and survival of MRSA can be used for the development of novel therapeutics.
IMPORTANCE While Staphylococcus aureus has historically not been considered a uropathogen, S. aureus urinary tract infection (UTI) is clinically significant in certain patient populations, including those with chronic indwelling urinary catheters. Moreover, most S. aureus strains causing catheter-associated UTI (CAUTI) are methicillin-resistant S. aureus (MRSA). MRSA is difficult to treat due to limited treatment options and the potential to deteriorate into life-threatening bacteremia, urosepsis, and shock. In this study, we found that pathways involved in pyruvate oxidation, TCA cycle, and mannitol metabolism are important for MRSA fitness and survival in the urinary tract. Improved understanding of the metabolic needs of MRSA in the urinary tract may help us develop novel inhibitors of MRSA metabolism that can be used to treat MRSA-CAUTI more effectively
Atomic-scale surface demixing in a eutectic liquid BiSn alloy
Resonant x-ray reflectivity of the surface of the liquid phase of the
BiSn eutectic alloy reveals atomic-scale demixing extending over
three near-surface atomic layers. Due to the absence of underlying atomic
lattice which typically defines adsorption in crystalline alloys, studies of
adsorption in liquid alloys provide unique insight on interatomic interactions
at the surface. The observed composition modulation could be accounted for
quantitatively by the Defay-Prigogine and Strohl-King multilayer extensions of
the single-layer Gibbs model, revealing a near-surface domination of the
attractive Bi-Sn interaction over the entropy.Comment: 4 pages (two-column), 3 figures, 1 table; Added a figure, updated
references, discussion; accepted at Phys. Rev. Let
Dynamics of monatomic liquids
We present a theory of the dynamics of monatomic liquids built on two basic
ideas: (1) The potential surface of the liquid contains three classes of
intersecting nearly-harmonic valleys, one of which (the ``random'' class)
vastly outnumbers the others and all whose members have the same depth and
normal mode spectrum; and (2) the motion of particles in the liquid can be
decomposed into oscillations in a single many-body valley, and nearly
instantaneous inter-valley transitions called transits. We review the
thermodynamic data which led to the theory, and we discuss the results of
molecular dynamics (MD) simulations of sodium and Lennard-Jones argon which
support the theory in more detail. Then we apply the theory to problems in
equilibrium and nonequilibrium statistical mechanics, and we compare the
results to experimental data and MD simulations. We also discuss our work in
comparison with the QNM and INM research programs and suggest directions for
future research.Comment: 53 pages, 16 figures. Differs from published version in using
American English spelling and grammar (published version uses British
English
Transposon mutagenesis identifies uropathogenic Escherichia coli biofilm factors
Uropathogenic Escherichia coli (UPEC), which accounts for 85% of urinary tract infections (UTI), assembles biofilms in diverse environments, including the host. Besides forming biofilms on biotic surfaces and catheters, UPEC has evolved an intracellular pathogenic cascade that culminates in the formation of biofilm-like intracellular bacterial communities (IBCs) within bladder epithelial cells. Rapid bacterial replication during IBC formation augments a build-up in bacterial numbers and persistence within the host. Relatively little is known about factors mediating UPEC biofilm formation and how these overlap with IBC formation. To address this gap, we screened a UPEC transposon mutant library in three in vitro biofilm conditions: Luria broth (LB)-polyvinyl chloride (PVC), YESCA (yeast extract-Casamino Acids)-PVC, and YESCA-pellicle that are dependent on type 1 pili (LB) and curli (YESCA), respectively. Flagella are important in all three conditions. Mutants were identified that had biofilm defects in all three conditions but had no significant effects on the expression of type 1 pili, curli, or flagella. Thus, this approach uncovered a comprehensive inventory of novel effectors and regulators that are involved in UPEC biofilm formation under multiple conditions. A subset of these mutants was found to be dramatically attenuated and unable to form IBCs in a murine model of UTI. Collectively, this study expands our insights into UPEC multicellular behavior that may provide insights into IBC formation and virulence
First-principles equation of state and phase stability for the Ni-Al system under high pressures
The equation of state (EOS) of alloys at high pressures is generalized with
the cluster expansion method. It is shown that this provides a more accurate
description. The low temperature EOSs of Ni-Al alloys on FCC and BCC lattices
are obtained with density functional calculations, and the results are in good
agreement with experiments. The merits of the generalized EOS model are
confirmed by comparison with the mixing model. In addition, the FCC phase
diagram of the Ni-Al system is calculated by cluster variation method (CVM)
with both spin-polarized and non-spin-polarized effective cluster interactions
(ECI). The influence of magnetic energy on the phase stability is analyzed. A
long-standing discrepancy between ab initio formation enthalpies and
experimental data is addressed by defining a better reference state. This aids
both evaluation of an ab initio phase diagram and understanding the
thermodynamic behaviors of alloys and compounds. For the first time the
high-pressure behavior of order-disorder transition is investigated by ab
initio calculations. It is found that order-disorder temperatures follow the
Simon melting equation. This may be instructive for experimental and
theoretical research on the effect of an order-disorder transition on shock
Hugoniots.Comment: 27 pages, 12 figure
Tomographic retrieval of water vapour and temperature around polar mesospheric clouds using Odin-SMR
Evidence for donor strand complementation in the biogenesis of Haemophilus influenzae haemagglutinating pili
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73758/1/j.1365-2958.2000.01816.x.pd
Structural and chemical embrittlement of grain boundaries by impurities: a general theory and first principles calculations for copper
First principles calculations of the Sigma 5 (310)[001] symmetric tilt grain
boundary in Cu with Bi, Na, and Ag substitutional impurities provide evidence
that in the phenomenon of Bi embrittlement of Cu grain boundaries electronic
effects do not play a major role; on the contrary, the embrittlement is mostly
a structural or "size" effect. Na is predicted to be nearly as good an
embrittler as Bi, whereas Ag does not embrittle the boundary in agreement with
experiment. While we reject the prevailing view that "electronic" effects
(i.e., charge transfer) are responsible for embrittlement, we do not exclude
the role of chemistry. However numerical results show a striking equivalence
between the alkali metal Na and the semi metal Bi, small differences being
accounted for by their contrasting "size" and "softness" (defined here). In
order to separate structural and chemical effects unambiguously if not
uniquely, we model the embrittlement process by taking the system of grain
boundary and free surfaces through a sequence of precisely defined gedanken
processes; each of these representing a putative mechanism. We thereby identify
three mechanisms of embrittlement by substitutional impurities, two of which
survive in the case of embrittlement or cohesion enhancement by interstitials.
Two of the three are purely structural and the third contains both structural
and chemical elements that by their very nature cannot be further unravelled.
We are able to take the systems we study through each of these stages by
explicit computer simulations and assess the contribution of each to the nett
reduction in intergranular cohesion. The conclusion we reach is that
embrittlement by both Bi and Na is almost exclusively structural in origin;
that is, the embrittlement is a size effect.Comment: 13 pages, 5 figures; Accepted in Phys. Rev.
Kochen-Specker Vectors
We give a constructive and exhaustive definition of Kochen-Specker (KS)
vectors in a Hilbert space of any dimension as well as of all the remaining
vectors of the space. KS vectors are elements of any set of orthonormal states,
i.e., vectors in n-dim Hilbert space, H^n, n>3 to which it is impossible to
assign 1s and 0s in such a way that no two mutually orthogonal vectors from the
set are both assigned 1 and that not all mutually orthogonal vectors are
assigned 0. Our constructive definition of such KS vectors is based on
algorithms that generate MMP diagrams corresponding to blocks of orthogonal
vectors in R^n, on algorithms that single out those diagrams on which algebraic
0-1 states cannot be defined, and on algorithms that solve nonlinear equations
describing the orthogonalities of the vectors by means of statistically
polynomially complex interval analysis and self-teaching programs. The
algorithms are limited neither by the number of dimensions nor by the number of
vectors. To demonstrate the power of the algorithms, all 4-dim KS vector
systems containing up to 24 vectors were generated and described, all 3-dim
vector systems containing up to 30 vectors were scanned, and several general
properties of KS vectors were found.Comment: 19 pages, 6 figures, title changed, introduction thoroughly
rewritten, n-dim rotation of KS vectors defined, original Kochen-Specker 192
(117) vector system translated into MMP diagram notation with a new graphical
representation, results on Tkadlec's dual diagrams added, several other new
results added, journal version: to be published in J. Phys. A, 38 (2005). Web
page: http://m3k.grad.hr/pavici
Mucosal infection rewires TNFÉ‘ signaling dynamics to skew susceptibility to recurrence
A mucosal infectious disease episode can render the host either more or less susceptible to recurrent infection, but the specific mechanisms that tip the balance remain unclear. We investigated this question in a mouse model of recurrent urinary tract infection and found that a prior bladder infection resulted in an earlier onset of tumor necrosis factor-alpha (TNFÉ‘)-mediated bladder inflammation upon subsequent bacterial challenge, relative to age-matched naive mice. However, the duration of TNFÉ‘ signaling activation differed according to whether the first infection was chronic (Sensitized) or self-limiting (Resolved). TNFÉ‘ depletion studies revealed that transient early-phase TNFÉ‘ signaling in Resolved mice promoted clearance of bladder-colonizing bacteria via rapid recruitment of neutrophils and subsequent exfoliation of infected bladder cells. In contrast, sustained TNFÉ‘ signaling in Sensitized mice prolonged damaging inflammation, worsening infection. This work reveals how TNFÉ‘ signaling dynamics can be rewired by a prior infection to shape diverse susceptibilities to future mucosal infections
- …