3 research outputs found
Efficient Algorithms for Optimal Control of Quantum Dynamics: The "Krotov'' Method unencumbered
Efficient algorithms for the discovery of optimal control designs for
coherent control of quantum processes are of fundamental importance. One
important class of algorithms are sequential update algorithms generally
attributed to Krotov. Although widely and often successfully used, the
associated theory is often involved and leaves many crucial questions
unanswered, from the monotonicity and convergence of the algorithm to
discretization effects, leading to the introduction of ad-hoc penalty terms and
suboptimal update schemes detrimental to the performance of the algorithm. We
present a general framework for sequential update algorithms including specific
prescriptions for efficient update rules with inexpensive dynamic search length
control, taking into account discretization effects and eliminating the need
for ad-hoc penalty terms. The latter, while necessary to regularize the problem
in the limit of infinite time resolution, i.e., the continuum limit, are shown
to be undesirable and unnecessary in the practically relevant case of finite
time resolution. Numerical examples show that the ideas underlying many of
these results extend even beyond what can be rigorously proved.Comment: 19 pages, many figure