2 research outputs found

    All-sky convolution for polarimetry experiments

    Get PDF
    We discuss all-sky convolution of the instrument beam with the sky signal in polarimetry experiments, such as the Planck mission which will map the temperature anisotropy and polarization of the cosmic microwave background (CMB). To account properly for stray light (from e.g. the galaxy, sun, and planets) in the far side-lobes of such an experiment, it is necessary to perform the beam convolution over the full sky. We discuss this process in multipole space for an arbitrary beam response, fully including the effects of beam asymmetry and cross-polarization. The form of the convolution in multipole space is such that the Wandelt-Gorski fast technique for all-sky convolution of scalar signals (e.g. temperature) can be applied with little modification. We further show that for the special case of a pure co-polarized, axisymmetric beam the effect of the convolution can be described by spin-weighted window functions. In the limits of a small angle beam and large Legendre multipoles, the spin-weight 2 window function for the linear polarization reduces to the usual scalar window function used in previous analyses of beam effects in CMB polarimetry experiments. While we focus on the example of polarimetry experiments in the context of CMB studies, we emphasise that the formalism we develop is applicable to anisotropic filtering of arbitrary tensor fields on the sphere.Comment: 8 pages, 1 figure; Minor changes to match version accepted by Phys. Rev.

    The Dynamics of Brane-World Cosmological Models

    Full text link
    Brane-world cosmology is motivated by recent developments in string/M-theory and offers a new perspective on the hierarchy problem. In the brane-world scenario, our Universe is a four-dimensional subspace or {\em brane} embedded in a higher-dimensional {\em bulk} spacetime. Ordinary matter fields are confined to the brane while the gravitational field can also propagate in the bulk, leading to modifications of Einstein's theory of general relativity at high energies. In particular, the Randall-Sundrum-type models are self-consistent and simple and allow for an investigation of the essential non-linear gravitational dynamics. The governing field equations induced on the brane differ from the general relativistic equations in that there are nonlocal effects from the free gravitational field in the bulk, transmitted via the projection of the bulk Weyl tensor, and the local quadratic energy-momentum corrections, which are significant in the high-energy regime close to the initial singularity. In this review we discuss the asymptotic dynamical evolution of spatially homogeneous brane-world cosmological models containing both a perfect fluid and a scalar field close to the initial singularity. Using dynamical systems techniques it is found that, for models with a physically relevant equation of state, an isotropic singularity is a past-attractor in all orthogonal spatially homogeneous models (including Bianchi type IX models). In addition, we describe the dynamics in a class of inhomogeneous brane-world models, and show that these models also have an isotropic initial singularity. These results provide support for the conjecture that typically the initial cosmological singularity is isotropic in brane-world cosmology.Comment: Einstein Centennial Review Article: to appear in CJ
    corecore