172 research outputs found

    The Role of Wind Waves in Dynamics of the Air-Sea Interface

    Full text link
    Wind waves are considered as an intermediate small-scale dynamic process at the air-sea interface,which modulates radically middle-scale dynamic processes of the boundary layers in water and air. It is shown that with the aim of a quantitative description of the impact said, one can use the numerical wind wave models which are added with the blocks of the dynamic atmosphere boundary layer (DABL) and the dynamic water upper layer (DWUL). A mathematical formalization for the problem of energy and momentum transfer from the wind to the upper ocean is given on the basis of the well known mathematical representations for mechanisms of a wind wave spectrum evolution. The problem is solved quantitatively by means of introducing special system parameters: the relative rate of the wave energy input, IRE, and the relative rate of the wave energy dissipation, DRE. For two simple wave-origin situations, the certain estimations for values of IRE and DRE are found, and the examples of calculating an impact of a wind sea on the characteristics of both the boundary layer of atmosphere and the water upper layer are given. The results obtained permit to state that the models of wind waves of the new (fifth) generation, which are added with the blocks of the DABL and the DWUL, could be an essential chain of the general model describing the ocean-atmosphere circulation.Comment: 11 pages, 4 figures, 1 tabl

    Individual Variations in Maternal Care Early in Life Correlate with Later Life Decision-Making and c-Fos Expression in Prefrontal Subregions of Rats

    Get PDF
    Early life adversity affects hypothalamus-pituitary-adrenal axis activity, alters cognitive functioning and in humans is thought to increase the vulnerability to psychopathology–e.g. depression, anxiety and schizophrenia- later in life. Here we investigated whether subtle natural variations among individual rat pups in the amount of maternal care received, i.e. differences in the amount of licking and grooming (LG), correlate with anxiety and prefrontal cortex-dependent behavior in young adulthood. Therefore, we examined the correlation between LG received during the first postnatal week and later behavior in the elevated plus maze and in decision-making processes using a rodent version of the Iowa Gambling Task (rIGT). In our cohort of male and female animals a high degree of LG correlated with less anxiety in the elevated plus maze and more advantageous choices during the last 10 trials of the rIGT. In tissue collected 2 hrs after completion of the task, the correlation between LG and c-fos expression (a marker of neuronal activity) was established in structures important for IGT performance. Negative correlations existed between rIGT performance and c-fos expression in the lateral orbitofrontal cortex, prelimbic cortex, infralimbic cortex and insular cortex. The insular cortex correlations between c-fos expression and decision-making performance depended on LG background; this was also true for the lateral orbitofrontal cortex in female rats. Dendritic complexity of insular or infralimbic pyramidal neurons did not or weakly correlate with LG background. We conclude that natural variations in maternal care received by pups may significantly contribute to later-life decision-making and activity of underlying brain structures

    Internet of Things for Environmental Sustainability and Climate Change

    Get PDF
    Our world is vulnerable to climate change risks such as glacier retreat, rising temperatures, more variable and intense weather events (e.g., floods, droughts, and frosts), deteriorating mountain ecosystems, soil degradation, and increasing water scarcity. However, there are big gaps in our understanding of changes in regional climate and how these changes will impact human and natural systems, making it difficult to anticipate, plan, and adapt to the coming changes. The IoT paradigm in this area can enhance our understanding of regional climate by using technology solutions, while providing the dynamic climate elements based on integrated environmental sensing and communications that is necessary to support climate change impacts assessments in each of the related areas (e.g., environmental quality and monitoring, sustainable energy, agricultural systems, cultural preservation, and sustainable mining). In the IoT in Environmental Sustainability and Climate Change chapter, a framework for informed creation, interpretation and use of climate change projections and for continued innovations in climate and environmental science driven by key societal and economic stakeholders is presented. In addition, the IoT cyberinfrastructure to support the development of continued innovations in climate and environmental science is discussed
    corecore