518 research outputs found

    Performance of novel silicon n-in-p planar Pixel Sensors

    Full text link
    The performance of novel n-in-p planar pixel detectors, designed for future upgrades of the ATLAS Pixel system is presented. The n-in-p silicon sensors technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost effectiveness, that allow for enlarging the area instrumented with pixel detectors. The n-in-p modules presented here are composed of pixel sensors produced by CiS connected by bump-bonding to the ATLAS readout chip FE-I3. The characterization of these devices has been performed before and after irradiation up to a fluence of 5 x 10**15 1 MeV neq cm-2 . Charge collection measurements carried out with radioactive sources have proven the functioning of this technology up to these particle fluences. First results from beam test data with a 120 GeV/c pion beam at the CERN-SPS are also discussed, demonstrating a high tracking efficiency of (98.6 \pm 0.3)% and a high collected charge of about 10 ke for a device irradiated at the maximum fluence and biased at 1 kV.Comment: Preprint submitted to Nuclear Instruments and Methods A. 7 pages, 13 figure

    Heavily Irradiated N-in-p Thin Planar Pixel Sensors with and without Active Edges

    Full text link
    We present the results of the characterization of silicon pixel modules employing n-in-p planar sensors with an active thickness of 150 ÎĽ\mathrm{\mu}m, produced at MPP/HLL, and 100-200 ÎĽ\mathrm{\mu}m thin active edge sensor devices, produced at VTT in Finland. These thin sensors are designed as candidates for the ATLAS pixel detector upgrade to be operated at the HL-LHC, as they ensure radiation hardness at high fluences. They are interconnected to the ATLAS FE-I3 and FE-I4 read-out chips. Moreover, the n-in-p technology only requires a single side processing and thereby it is a cost-effective alternative to the n-in-n pixel technology presently employed in the LHC experiments. High precision beam test measurements of the hit efficiency have been performed on these devices both at the CERN SpS and at DESY, Hamburg. We studied the behavior of these sensors at different bias voltages and different beam incident angles up to the maximum one expected for the new Insertable B-Layer of ATLAS and for HL-LHC detectors. Results obtained with 150 ÎĽ\mathrm{\mu}m thin sensors, assembled with the new ATLAS FE-I4 chip and irradiated up to a fluence of 4Ă—\times1015neq/cm2^{15}\mathrm{n}_{\mathrm{eq}}/\mathrm{cm}^2, show that they are excellent candidates for larger radii of the silicon pixel tracker in the upgrade of the ATLAS detector at HL-LHC. In addition, the active edge technology of the VTT devices maximizes the active area of the sensor and reduces the material budget to suit the requirements for the innermost layers. The edge pixel performance of VTT modules has been investigated at beam test experiments and the analysis after irradiation up to a fluence of 5Ă—\times1015neq/cm2^{15}\mathrm{n}_{\mathrm{eq}}/\mathrm{cm}^2 has been performed using radioactive sources in the laboratory.Comment: Proceedings for iWoRiD 2013 conference, submitted to JINS

    Thin n-in-p pixel sensors and the SLID-ICV vertical integration technology for the ATLAS upgrade at the HL-LHC

    Full text link
    The R&D activity presented is focused on the development of new modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The performance after irradiation of n-in-p pixel sensors of different active thicknesses is studied, together with an investigation of a novel interconnection technique offered by the Fraunhofer Institute EMFT in Munich, the Solid-Liquid-InterDiffusion (SLID), which is an alternative to the standard solder bump-bonding. The pixel modules are based on thin n-in-p sensors, with an active thickness of 75 um or 150 um, produced at the MPI Semiconductor Laboratory (MPI HLL) and on 100 um thick sensors with active edges, fabricated at VTT, Finland. Hit efficiencies are derived from beam test data for thin devices irradiated up to a fluence of 4e15 neq/cm^2. For the active edge devices, the charge collection properties of the edge pixels before irradiation is discussed in detail, with respect to the inner ones, using measurements with radioactive sources. Beyond the active edge sensors, an additional ingredient needed to design four side buttable modules is the possibility of moving the wire bonding area from the chip surface facing the sensor to the backside, avoiding the implementation of the cantilever extruding beyond the sensor area. The feasibility of this process is under investigation with the FE-I3 SLID modules, where Inter Chip Vias are etched, employing an EMFT technology, with a cross section of 3 um x 10 um, at the positions of the original wire bonding pads.Comment: Proceedings for Pixel 2012 Conference, submitted to NIM A, 6 page

    Production and Characterisation of SLID Interconnected n-in-p Pixel Modules with 75 Micrometer Thin Silicon Sensors

    Full text link
    The performance of pixel modules built from 75 micrometer thin silicon sensors and ATLAS read-out chips employing the Solid Liquid InterDiffusion (SLID) interconnection technology is presented. This technology, developed by the Fraunhofer EMFT, is a possible alternative to the standard bump-bonding. It allows for stacking of different interconnected chip and sensor layers without destroying the already formed bonds. In combination with Inter-Chip-Vias (ICVs) this paves the way for vertical integration. Both technologies are combined in a pixel module concept which is the basis for the modules discussed in this paper. Mechanical and electrical parameters of pixel modules employing both SLID interconnections and sensors of 75 micrometer thickness are covered. The mechanical features discussed include the interconnection efficiency, alignment precision and mechanical strength. The electrical properties comprise the leakage currents, tuning characteristics, charge collection, cluster sizes and hit efficiencies. Targeting at a usage at the high luminosity upgrade of the LHC accelerator called HL-LHC, the results were obtained before and after irradiation up to fluences of 101610^{16} neq/cm2\mathrm{n}_{\mathrm{eq}}/\mathrm{cm}^2 (1 MeV neutrons).Comment: 16 pages, 22 figure

    Novel Silicon n-in-p Pixel Sensors for the future ATLAS Upgrades

    Full text link
    In view of the LHC upgrade phases towards HL-LHC the ATLAS experiment plans to upgrade the Inner Detector with an all silicon system. The n-in-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost effectiveness, that allow for enlarging the area instrumented with pixel detectors. We present the characterization and performance of novel n-in-p planar pixel sensors produced by CiS (Germany) connected by bump bonding to the ATLAS readout chip FE-I3. These results are obtained before and after irradiation up to a fluence of 10^16 1-MeV n_eq/cm^2, and prove the operability of this kind of sensors in the harsh radiation environment foreseen for the pixel system at HL-LHC. We also present an overview of the new pixel production, which is on-going at CiS for sensors compatible with the new ATLAS readout chip FE-I4.Comment: Preprint submitted to NIM-A Proceedings (Elba 2012

    Characterization of Thin Pixel Sensor Modules Interconnected with SLID Technology Irradiated to a Fluence of 2â‹…1015\cdot 10^{15}\,neq_{\mathrm{eq}}/cm2^2

    Full text link
    A new module concept for future ATLAS pixel detector upgrades is presented, where thin n-in-p silicon sensors are connected to the front-end chip exploiting the novel Solid Liquid Interdiffusion technique (SLID) and the signals are read out via Inter Chip Vias (ICV) etched through the front-end. This should serve as a proof of principle for future four-side buttable pixel assemblies for the ATLAS upgrades, without the cantilever presently needed in the chip for the wire bonding. The SLID interconnection, developed by the Fraunhofer EMFT, is a possible alternative to the standard bump-bonding. It is characterized by a very thin eutectic Cu-Sn alloy and allows for stacking of different layers of chips on top of the first one, without destroying the pre-existing bonds. This paves the way for vertical integration technologies. Results of the characterization of the first pixel modules interconnected through SLID as well as of one sample irradiated to 2â‹…10152\cdot10^{15}\,\neqcm{} are discussed. Additionally, the etching of ICV into the front-end wafers was started. ICVs will be used to route the signals vertically through the front-end chip, to newly created pads on the backside. In the EMFT approach the chip wafer is thinned to (50--60)\,ÎĽ\mum.Comment: Proceedings to PSD

    Performance of n-in-p pixel detectors irradiated at fluences up to 5x10**15 neq/cm**2 for the future ATLAS upgrades

    Get PDF
    We present the results of the characterization of novel n-in-p planar pixel detectors, designed for the future upgrades of the ATLAS pixel system. N-in-p silicon devices are a promising candidate to replace the n-in-n sensors thanks to their radiation hardness and cost effectiveness, that allow for enlarging the area instrumented with pixel detectors. The n-in-p modules presented here are composed of pixel sensors produced by CiS connected by bump-bonding to the ATLAS readout chip FE-I3. The characterization of these devices has been performed with the ATLAS pixel read-out systems, TurboDAQ and USBPIX, before and after irradiation with 25 MeV protons and neutrons up to a fluence of 5x10**15 neq /cm2. The charge collection measurements carried out with radioactive sources have proven the feasibility of employing this kind of detectors up to these particle fluences. The collected charge has been measured to be for any fluence in excess of twice the value of the FE-I3 threshold, tuned to 3200 e. The first results from beam test data with 120 GeV pions at the CERN-SPS are also presented, demonstrating a high tracking efficiency before irradiation and a high collected charge for a device irradiated at 10**15 neq /cm2. This work has been performed within the framework of the RD50 Collaboration.Comment: Proceedings of the Conference "Technology and Instrumentation in Particle Physics 2011

    Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington's disease

    Get PDF
    We used PET scans with the tracers [18F]fluorodeoxyglucose (FDG) and [11C]raclopride (RACLO) to study glucose metabolism and dopamine D2 receptor binding in the caudate nucleus and putamen of 18 carriers of the Huntington's disease gene mutation (10 asymptomatic subjects and eight untreated symptomatic Huntington's disease patients in an early disease stage). We also performed MR1 scans and measured the bicaudate ratio (BCR) in the same subjects. Data were compared with those from nine mutation-negative members of Huntington's disease families and separate groups of age matched controls. The PET scans were repeated 1.5-3 years later in six of the asymptomatic gene carriers. Symptomatic Huntington's disease patients showed a marked reduction of FDG and RACLO uptake in the caudate nucleus and putamen and a significant increase of BCR. Asymptomatic mutation carriers revealed significant hypometabolism in the caudate nucleus and putamen. The RACLO binding was significantly decreased in the putamen. Decrements of caudate nucleus tracer uptake, particularly RACLO, correlated significantly with BCR increases in both symptomatic and asymptomatic gene carriers. In asymptomatic carriers, metabolic and receptor binding decreases were also significantly associated with the CAG repeat number but not with the individual's age. Discriminant function analysis correctly classified clinical and genetic status in 24 of 27 subjects on the basis of their striatal PET values (83% sensitivity and 100% specificity). Three asymptomatic mutation carriers were classified/grouped together with mutation-negative subjects, indicating that these individuals had normal striatal RACLO and FDG uptake. Follow-up PET data from gene-positive subjects showed a significant reduction in the mean striatal RACLO binding of 6.3% per year. Striatal glucose metabolism revealed an overall non significant 2.3% decrease per year These data indicate that asymptomatic Huntington's disease mutation carriers may show normal neuronal function for a long period of life. These findings also suggest that it may be possible to predict when an asymptomatic gene carrier will develop clinical symptoms from serial PET measurements of striatal functio

    Prototype ATLAS IBL Modules using the FE-I4A Front-End Readout Chip

    Get PDF
    The ATLAS Collaboration will upgrade its semiconductor pixel tracking detector with a new Insertable B-layer (IBL) between the existing pixel detector and the vacuum pipe of the Large Hadron Collider. The extreme operating conditions at this location have necessitated the development of new radiation hard pixel sensor technologies and a new front-end readout chip, called the FE-I4. Planar pixel sensors and 3D pixel sensors have been investigated to equip this new pixel layer, and prototype modules using the FE-I4A have been fabricated and characterized using 120 GeV pions at the CERN SPS and 4 GeV positrons at DESY, before and after module irradiation. Beam test results are presented, including charge collection efficiency, tracking efficiency and charge sharing.Comment: 45 pages, 30 figures, submitted to JINS

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal
    • …
    corecore