33 research outputs found

    Developmental gene networks: a triathlon on the course to T cell identity

    Full text link

    Experimental investigation of an atmospheric Rectangular rich Quench Lean Combustor Sector for Aeroengines

    No full text
    In this research work the potential of rich quench lean combustion for low emission aeroengines is investigated in a rectangular atmospheric sector, representing a segment of an annular combustor. For a constant design point (cruise) the mixing process and the NOx formation are studied in detail by concentration, temperature and velocity measurements using intrusive and non-intrusive measuring techniques. Measurements at the exit of the homogeneous primary zone show relatively high levels of non-thermal NO. The NOx formation in the quench zone is very low due to the quick mixing of the secondary air achieved by an adequate penetration of the secondary air jets and a high turbulence level. The NOx and CO emissions at the combustor exit are low and the pattern factor of the temperature distribution is sufficient.</jats:p

    Flexural behavior of sandwich panels with cellular wood, plywood stiffener/foam and thermoplastic composite core

    No full text
    A series of experimental tests have been carried out on three types of novel sandwich panels mainly designed for application in lightweight mobile housing. Two types of the panels are manufactured entirely from wood-based materials while the third one presents a combination of plywood for surfaces and corrugated thermoplastic composite as a core part. All sandwich panels are designed to allow rapid one-shot manufacturing. Mechanical performance has been evaluated in four-point bending comparing the data to the reference plywood board. Additionally, finite element simulations were performed to evaluate global behavior, stress distribution and provide the basis for a reliable design tool. Obtained results show sufficient mechanical characteristics suitable for floor and wall units. Compared to a solid plywood board, sandwich alternative can reach up to 42% higher specific stiffness, at the same time maintaining sufficient strength characteristics

    Differences in Strength and Timing of the mtDNA Bottleneck between Zebrafish Germline and Non-germline Cells

    No full text
    We studied the mtDNA bottleneck in zebrafish to elucidate size, timing, and variation in germline and non-germline cells. Mature zebrafish oocytes contain, on average, 19.0 × 10(6) mtDNA molecules with high variation between oocytes. During embryogenesis, the mtDNA copy number decreases to ∼170 mtDNA molecules per primordial germ cell (PGC), a number similar to that in mammals, and to ∼50 per non-PGC. These occur at the same developmental stage, implying considerable variation in mtDNA copy number in (non-)PGCs of the same female, dictated by variation in the mature oocyte. The presence of oocytes with low mtDNA numbers, if similar in humans, could explain how (de novo) mutations can reach high mutation loads within a single generation. High mtDNA copy numbers in mature oocytes are established by mtDNA replication during oocyte development. Bottleneck differences between germline and non-germline cells, due to early differentiation of PGCs, may account for different distribution patterns of familial mutations
    corecore