957 research outputs found
Recommendations and comments concerning documentation on the microwave active spectrometer systems
There are no author-identified significant results in this report
Analysis of Jovian decametric data: Study of radio emission mechanisms
The Voyager 1 and Voyager 2 Planetary Radio Astronomy Experiments (PRA) have produced the finest set of Jovian decametric radio emission data ever obtained. Jovian decametric L-burst and S-burst arcs were characterized and the data reconciled with models for the radio emission geometry and mechanisms. The first major results involve comparisons of the distribution of arc separations with longitudes. The identification and analyses of systematic variations in the PRA data have yielded interesting results, but only the most obvious features of the data were examined. Analyses of the PRA data were extended with the use of new 6-Sec formats that are more sensitive to the S-bursts
High-spatial-resolution passive microwave sounding systems
During this period the emphasis was on the following: (1) further design, construction, and testing of the improved 54-GHz portion of the 54-118 GHz microwave temperature sounder (MTS) aircraft radiometer system in preparation for ER-2 observations in July 1991; and (2) final analysis and documentation of procedures for detecting and analyzing thermal waves in our 118-GHz MTS imagery. In addition, we have new unpublished measurements of dry-air attenuation at frequencies of 54 to 66 GHz and over a temperature range of 280K to 326K; these measurements should enable us to improve further our atmospheric transmittance models. It was further noted that the proposed SSMIS conical-scanning microwave spectrometer on the military DMSP Block 5D-3 spacecraft designed to measure stratospheric and mesospheric temperature profiles will be observing the Zeeman-split oxygen lines with sufficient spectral resolution that the changing Doppler shifts with view angle will substantially degrade the potential system performance unless remedied; this was briefly studied and documented
Analysis of Jovian decamteric data: Study of radio emission mechanisms
This research effort involved careful examination of Jovian radio emission data below 40 MHz, with emphasis on the informative observations of the Planetary Radio Astronomy experiment (PRA) on the Voyager 1 and 2 spacecraft. The work is divided into three sections, decametric arcs, decametric V bursts, and hectometric modulated spectral activity (MSA)
Atmospheric frontal zone studies
The research supported by this contract and directed Activities in the inversion and interpretation of data produced by the Nimbus-7 scanning multichannel microwave radiometer (SMMR) are reported. There were five principal subjects: (1) modeling of the emissivity of foam patches on the ocean surface; (2) inversion of radiometric data by a multidimensional algorithm; (3) an operational water vapor retrieval algorithm; (4) inference of Antarctic firm accumulation rates; and (5) inference of water vapor over the Arctic sea ice
High-spatial-resolution passive microwave sounding systems
The principal contributions of this combined theoretical and experimental effort were to advance and demonstrate new and more accurate techniques for sounding atmospheric temperature, humidity, and precipitation profiles at millimeter wavelengths, and to improve the scientific basis for such soundings. Some of these techniques are being incorporated in both research and operational systems. Specific results include: (1) development of the MIT Microwave Temperature Sounder (MTS), a 118-GHz eight-channel imaging spectrometer plus a switched-frequency spectrometer near 53 GHz, for use on the NASA ER-2 high-altitude aircraft, (2) conduct of ER-2 MTS missions in multiple seasons and locations in combination with other instruments, mapping with unprecedented approximately 2-km lateral resolution atmospheric temperature and precipitation profiles, atmospheric transmittances (at both zenith and nadir), frontal systems, and hurricanes, (3) ground based 118-GHz 3-D spectral images of wavelike structure within clouds passing overhead, (4) development and analysis of approaches to ground- and space-based 5-mm wavelength sounding of the upper stratosphere and mesosphere, which supported the planning of improvements to operational weather satellites, (5) development of improved multidimensional and adaptive retrieval methods for atmospheric temperature and humidity profiles, (6) development of combined nonlinear and statistical retrieval techniques for 183-GHz humidity profile retrievals, (7) development of nonlinear statistical retrieval techniques for precipitation cell-top altitudes, and (8) numerical analyses of the impact of remote sensing data on the accuracy of numerical weather predictions; a 68-km gridded model was used to study the spectral properties of error growth
High spatial resolution passive microwave sounding systems
Two extensive series of flights aboard the ER-2 aircraft were conducted with the MIT 118 GHz imaging spectrometer together with a 53.6 GHz nadir channel and a TV camera record of the mission. Other microwave sensors, including a 183 GHz imaging spectrometer were flown simultaneously by other research groups. Work also continued on evaluating the impact of high-resolution passive microwave soundings upon numerical weather prediction models
Symmetry of re-entrant tetragonal phase in Ba1-xNaxFe2As2: Magnetic versus orbital ordering mechanism
Magneto-structural phase transitions in Ba1-xAxFe2As2 (A = K, Na) materials
are discussed for both magnetically and orbitally driven mechanisms, using a
symmetry analysis formulated within the Landau theory of phase transitions.
Both mechanisms predict identical orthorhombic space-group symmetries for the
nematic and magnetic phases observed over much of the phase diagram, but they
predict different tetragonal space-group symmetries for the newly discovered
re-entrant tetragonal phase in Ba1-xNaxFe2As2 (x ~ 0.24-0.28). In a magnetic
scenario, magnetic order with moments along the c-axis, as found
experimentally, does not allow any type of orbital order, but in an orbital
scenario, we have determined two possible orbital patterns, specified by
P4/mnc1' and I4221' space groups, which do not require atomic displacements
relative to the parent I4/mmm1' symmetry and, in consequence, are
indistinguishable in conventional diffraction experiments. We demonstrate that
the three possible space groups are however, distinct in resonant X-ray Bragg
diffraction patterns created by Templeton & Templeton scattering. This provides
an experimental method of distinguishing between magnetic and orbital models
Development of a stratospheric and mesospheric microwave temperature sounder experiment
A passive microwave spectrometer system for measuring global atmospheric temperature profiles from 0-75 km altitude was developed and analyzed. The system utilizes 12 channels near the 5 mm wavelength oxygen absorption band and is designed to provide global coverage by scanning perpendicular to the orbital track of a polar orbiting satellite. A significant improvement in the accuracy of theoretical atmospheric microwave transmittance functions was achieved through the development of a first-order approximation to overlapping line theory for the oxygen molecule. This approximation is particularly important in the troposphere and lower stratosphere where pressure-broadening blends nearby lines. Ground-based and aircraft observations of several resonances of stratospheric oxygen generally support the theory. The 23, 25, 29, and 31 atmospheric oxygen lines were measured and the frequencies of several such oxygen lines were measured with improved precision. The polarization and Zeeman splitting of the atmospheric 27 line was also observed
Solid-State Microwave Electronics
Contains reports on four research projects.National Aeronautics and Space Administration (Grant NGL-22-009-163)Joint Services Electronics Programs (U. S. Army, U.S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E
- …