20,717 research outputs found

    Deprojection technique for galaxy cluster considering point spread function

    Full text link
    We present a new method for the analysis of Abell 1835 observed by XMM-Newton. The method is a combination of the Direct Demodulation technique and deprojection. We eliminate the effects of the point spread function (PSF) with the Direct Demodulation technique. We then use a traditional depro-jection technique to study the properties of Abell 1835. Compared to that of deprojection method only, the central electron density derived from this method increases by 30%, while the temperature profile is similar.Comment: accepted for publication in Sciences in China -- G, the Black Hole special issu

    Saturation Dislocation Microstructures In A Copper Single Crystal During Fatigue In HClO4 Aqueous Solution

    Get PDF
    A copper single crystal was tested at room temperature in air and in a 0.1M HClO4 solution under the symmetric tension-compression load mode, with loading axis parallel to the [013] direction. The dislocation structures were characterised using the electron channeling contrast (ECC) technique of scanning electron microscopy (SEM) and using transmission electron microscopy (TEM). The results show that the saturation dislocation structures in samples subjected to corrosion fatigue in the 0.1M HClO4 aqueous solution manly had the form of cells, dislocation wall-like and veins, which differ from the dislocation structures of dislocation wall-like and veins in the air environment

    Relationship between the gamma-ray burst pulse width and energy due to the Doppler effect of fireballs

    Full text link
    We study in details how the pulse width of gamma-ray bursts is related with energy under the assumption that the sources concerned are in the stage of fireballs. Due to the Doppler effect of fireballs, there exists a power law relationship between the two quantities within a limited range of frequency. The power law range and the power law index depend strongly on the observed peak energy EpE_p as well as the rest frame radiation form, and the upper and lower limits of the power law range can be determined by EpE_p. It is found that, within the same power law range, the ratio of the FWHMFWHM of the rising portion to that of the decaying phase of the pulses is also related with energy in the form of power laws. A platform-power-law-platform feature could be observed in the two relationships. In the case of an obvious softening of the rest frame spectrum, the two power law relationships also exist, but the feature would evolve to a peaked one. Predictions on the relationships in the energy range covering both the BATSE and Swift bands for a typical hard burst and a typical soft one are made. A sample of FRED (fast rise and exponential decay) pulse bursts shows that 27 out of the 28 sources belong to either the platform-power-law-platform feature class or the peaked feature group, suggesting that the effect concerned is indeed important for most of the sources of the sample. Among these bursts, many might undergo an obvious softening evolution of the rest frame spectrum.Comment: Accepted for publication in The Astrophysical Journa

    Quenching and Tomography from RHIC to LHC

    Full text link
    We compare fully perturbative and fully nonperturbative pictures of high-pT energy loss calculations to the first results from LHC. While over-suppressed compared to published ALICE data, parameter-free pQCD predictions based on the WHDG energy loss model constrained to RHIC data simultaneously describe well the preliminary CMS hadron suppression, ATLAS charged hadron v2, and ALICE D meson suppression; we also provide for future reference WHDG predictions for B meson RAA. However, energy loss calculations based on AdS/CFT also qualitatively describe well the RHIC pion and non-photonic electron suppression and LHC charged hadron suppression. We propose the double ratio of charm to bottom quark RAA will qualitatively distinguish between these two energy loss pictures.Comment: 4 pages, 3 figures. Proceedings for Quark Matter 201

    Distinguishing left- and right-handed molecules by two-step coherent pulses

    Full text link
    Chiral molecules with broken parity symmetries can be modeled as quantum systems with cyclic-transition structures. By using these novel properties, we design two-step laser pulses to distinguish left- and right-handed molecules from the enantiomers. After the applied pulse drivings, one kind chiral molecules are trapped in coherent population trapping state, while the other ones are pumped to the highest states for ionizations. Then, different chiral molecules can be separated.Comment: 11 pages, 3 figures

    Developmental depression-to-facilitation shift controls excitation-inhibition balance

    Get PDF
    Changes in the short-term dynamics of excitatory synapses over development have been observed throughout cortex, but their purpose and consequences remain unclear. Here, we propose that developmental changes in synaptic dynamics buffer the effect of slow inhibitory long-term plasticity, allowing for continuously stable neural activity. Using computational modeling we demonstrate that early in development excitatory short-term depression quickly stabilises neural activity, even in the face of strong, unbalanced excitation. We introduce a model of the commonly observed developmental shift from depression to facilitation and show that neural activity remains stable throughout development, while inhibitory synaptic plasticity slowly balances excitation, consistent with experimental observations. Our model predicts changes in the input responses from phasic to phasic-and-tonic and more precise spike timings. We also observe a gradual emergence of short-lasting memory traces governed by short-term plasticity development. We conclude that the developmental depression-to-facilitation shift may control excitation-inhibition balance throughout development with important functional consequences

    Dependence of quantum correlations of twin beams on pump finesse of optical parametric oscillator

    Full text link
    The dependence of quantum correlation of twin beams on the pump finesse of an optical parametric oscillator is studied with a semi-classical analysis. It is found that the phase-sum correlation of the output signal and idler beams from an optical parametric oscillator operating above threshold depends on the finesse of the pump field when the spurious pump phase noise generated inside the optical cavity and the excess noise of the input pump field are involved in the Langevin equations. The theoretical calculations can explain the previously experimental results, quantitatively.Comment: 27 pages, 8 figure

    Sparse coding-based spatiotemporal saliency for action recognition

    Full text link
    © 2015 IEEE. In this paper, we address the problem of human action recognition by representing image sequences as a sparse collection of patch-level spatiotemporal events that are salient in both space and time domain. Our method uses a multi-scale volumetric representation of video and adaptively selects an optimal space-time scale under which the saliency of a patch is most significant. The input image sequences are first partitioned into non-overlapping patches. Then, each patch is represented by a vector of coefficients that can linearly reconstruct the patch from a learned dictionary of basis patches. We propose to measure the spatiotemporal saliency of patches using Shannon's self-information entropy, where a patch's saliency is determined by information variation in the contents of the patch's spatiotemporal neighborhood. Experimental results on two benchmark datasets demonstrate the effectiveness of our proposed method

    Sequential and unsupervised document authorial clustering based on hidden markov model

    Full text link
    © 2017 IEEE. Document clustering groups documents of certain similar characteristics in one cluster. Document clustering has shown advantages on organization, retrieval, navigation and summarization of a huge amount of text documents on Internet. This paper presents a novel, unsupervised approach for clustering single-author documents into groups based on authorship. The key novelty is that we propose to extract contextual correlations to depict the writing style hidden among sentences of each document for clustering the documents. For this purpose, we build an Hidden Markov Model (HMM) for representing the relations of sequential sentences, and a two-level, unsupervised framework is constructed. Our proposed approach is evaluated on four benchmark datasets, widely used for document authorship analysis. A scientific paper is also used to demonstrate the performance of the approach on clustering short segments of a text into authorial components. Experimental results show that the proposed approach outperforms the state-of-the-art approaches
    corecore