2,181 research outputs found
Wurdi Youang: an Australian Aboriginal stone arrangement with possible solar indications
Wurdi Youang is an egg-shaped Aboriginal stone arrangement in Victoria,
Australia. Here we present a new survey of the site, and show that its major
axis is aligned within a few degrees of east-west. We confirm a previous
hypothesis that it contains alignments to the position on the horizon of the
setting sun at the equinox and the solstices, and show that two independent
sets of indicators are aligned in these directions. We show that these
alignments are unlikely to have arisen by chance, and instead the builders of
this stone arrangement appear to have deliberately aligned the site on
astronomically significant positions.Comment: Accepted by Rock Art Researc
Black hole collisions from Brill-Lindquist initial data: predictions of perturbation theory
The Misner initial value solution for two momentarily stationary black holes
has been the focus of much numerical study. We report here analytic results for
an astrophysically similar initial solution, that of Brill and Lindquist (BL).
Results are given from perturbation theory for initially close holes and are
compared with available numerical results. A comparison is made of the
radiation generated from the BL and the Misner initial values, and the physical
meaning is discussed.Comment: 11 pages, revtex3.0, 5 figure
The Evolution of Distorted Rotating Black Holes II: Dynamics and Analysis
We have developed a numerical code to study the evolution of distorted,
rotating black holes. This code is used to evolve a new family of black hole
initial data sets corresponding to distorted ``Kerr'' holes with a wide range
of rotation parameters, and distorted Schwarzschild black holes with odd-parity
radiation. Rotating black holes with rotation parameters as high as
are evolved and analyzed in this paper. The evolutions are generally carried
out to about , where is the ADM mass. We have extracted both the
even- and odd-parity gravitational waveforms, and find the quasinormal modes of
the holes to be excited in all cases. We also track the apparent horizons of
the black holes, and find them to be a useful tool for interpreting the
numerical results. We are able to compute the masses of the black holes from
the measurements of their apparent horizons, as well as the total energy
radiated and find their sum to be in excellent agreement with the ADM mass.Comment: 26 pages, LaTeX with RevTeX 3.0 macros. 27 uuencoded gz-compressed
postscript figures. Also available at http://jean-luc.ncsa.uiuc.edu/Papers/
Submitted to Physical Review
Weak antilocalization in a 2D electron gas with the chiral splitting of the spectrum
Motivated by the recent observation of the metal-insulator transition in
Si-MOSFETs we consider the quantum interference correction to the conductivity
in the presence of the Rashba spin splitting. For a small splitting, a
crossover from the localizing to antilocalizing regime is obtained. The
symplectic correction is revealed in the limit of a large separation between
the chiral branches. The relevance of the chiral splitting for the 2D electron
gas in Si-MOSFETs is discussed.Comment: 7 pages, REVTeX. Mistake corrected; in the limit of a large chiral
splitting the correction to the conductivity does not vanish but approaches
the symplectic valu
Gravitational wave extraction and outer boundary conditions by perturbative matching
We present a method for extracting gravitational radiation from a
three-dimensional numerical relativity simulation and, using the extracted
data, to provide outer boundary conditions. The method treats dynamical
gravitational variables as nonspherical perturbations of Schwarzschild
geometry. We discuss a code which implements this method and present results of
tests which have been performed with a three dimensional numerical relativity
code
Waveform propagation in black hole spacetimes: evaluating the quality of numerical solutions
We compute the propagation and scattering of linear gravitational waves off a
Schwarzschild black hole using a numerical code which solves a generalization
of the Zerilli equation to a three dimensional cartesian coordinate system.
Since the solution to this problem is well understood it represents a very good
testbed for evaluating our ability to perform three dimensional computations of
gravitational waves in spacetimes in which a black hole event horizon is
present.Comment: 13 pages, RevTeX, to appear in Phys. Rev.
Initial data for Einstein's equations with superposed gravitational waves
A method is presented to construct initial data for Einstein's equations as a
superposition of a gravitational wave perturbation on an arbitrary stationary
background spacetime. The method combines the conformal thin sandwich formalism
with linear gravitational waves, and allows detailed control over
characteristics of the superposed gravitational wave like shape, location and
propagation direction. It is furthermore fully covariant with respect to
spatial coordinate changes and allows for very large amplitude of the
gravitational wave.Comment: Version accepted by PRD; added convergence plots, expanded
discussion. 9 pages, 9 figure
Effective Lorentz Force due to Small-angle Impurity Scattering: Magnetotransport in High-Tc Superconductors
We show that a scattering rate which varies with angle around the Fermi
surface has the same effect as a periodic Lorentz force on magnetotransport
coefficients. This effect, together with the marginal Fermi liquid inelastic
scattering rate gives a quantitative explanation of the temperature dependence
and the magnitude of the observed Hall effect and magnetoresistance with just
the measured zero-field resistivity as input.Comment: 4 pages, latex, one epsf figure included in text. Several revisions
and corrections are included. Major conclusions are the sam
Scaling theory of two-dimensional metal-insulator transitions
We discuss the recently discovered two-dimensional metal-insulator transition
in zero magnetic field in the light of the scaling theory of localization. We
demonstrate that the observed symmetry relating conductivity and resistivity
follows directly from the quantum critical behavior associated with such a
transition. In addition, we show that very general scaling considerations imply
that any disordered two dimensional metal is a perfect metal, but most likely
not a Fermi liquid.Comment: 4 pages, no figures, REVTEX. Minor corrections adde
Head--on Collision of Two Unequal Mass Black Holes
We present results from the first fully nonlinear numerical calculations of
the head--on collision of two unequal mass black holes. Selected waveforms of
the most dominant l=2, 3 and 4 quasinormal modes are shown, as are the total
radiated energies and recoil velocities for a range of mass ratios and initial
separations. Our results validate the close and distant separation limit
perturbation studies, and suggest that the head--on collision scenario is not
likely to produce an astrophysically significant recoil effect.Comment: 5 pages, 3 figure
- …