20,371 research outputs found
Calculation of minor hysteresis loops under metastable to stable transformations in vortex matter
We present a model in which metastable supercooled phase and stable
equilibrium phase of vortex matter coexist in different regions of a sample.
Minor hysteresis loops are calculated with the simple assumption of the two
phases of vortex matter having field-independent critical current densities. We
use our earlier published ideas that the free energy barrier separating the
metastable and stable phases reduces as the magnetic induction moves farther
from the first order phase transition line, and that metastable to stable
transformations occur in local regions of the sample when the local energy
dissipation exceeds a critical value. Previously reported anomalous features in
minor hysteresis loops are reproduced, and calculated field profiles are
presented.Comment: 9pages, 7 figure
Voltage controlled spin injection in a (Ga,Mn)As/(Al,Ga)As Zener diode
The spin polarization of the electron current in a
p-(Ga,Mn)As-n-(Al,Ga)As-Zener tunnel diode, which is embedded in a
light-emitting diode, has been studied theoretically. A series of
self-consistent simulations determines the charge distribution, the band
bending, and the current-voltage characteristics for the entire structure. An
empirical tight-binding model, together with the Landauer- Buttiker theory of
coherent transport has been developed to study the current spin polarization.
This dual approach allows to explain the experimentally observed high magnitude
and strong bias dependence of the current spin polarization.Comment: Submitted to Phys. Rev. B Rapid Communication
Highly efficient room temperature spin injection in a metal-insulator-semiconductor light emitting diode
We demonstrate highly efficient spin injection at low and room temperature in
an AlGaAs/GaAs semiconductor heterostructure from a CoFe/AlOx tunnel spin
injector. We use a double-step oxide deposition for the fabrication of a
pinhole-free AlOx tunnel barrier. The measurements of the circular polarization
of the electroluminescence in the Oblique Hanle Effect geometry reveal injected
spin polarizations of at least 24% at 80K and 12% at room temperature
Logic programming in the context of multiparadigm programming: the Oz experience
Oz is a multiparadigm language that supports logic programming as one of its
major paradigms. A multiparadigm language is designed to support different
programming paradigms (logic, functional, constraint, object-oriented,
sequential, concurrent, etc.) with equal ease. This article has two goals: to
give a tutorial of logic programming in Oz and to show how logic programming
fits naturally into the wider context of multiparadigm programming. Our
experience shows that there are two classes of problems, which we call
algorithmic and search problems, for which logic programming can help formulate
practical solutions. Algorithmic problems have known efficient algorithms.
Search problems do not have known efficient algorithms but can be solved with
search. The Oz support for logic programming targets these two problem classes
specifically, using the concepts needed for each. This is in contrast to the
Prolog approach, which targets both classes with one set of concepts, which
results in less than optimal support for each class. To explain the essential
difference between algorithmic and search programs, we define the Oz execution
model. This model subsumes both concurrent logic programming
(committed-choice-style) and search-based logic programming (Prolog-style).
Instead of Horn clause syntax, Oz has a simple, fully compositional,
higher-order syntax that accommodates the abilities of the language. We
conclude with lessons learned from this work, a brief history of Oz, and many
entry points into the Oz literature.Comment: 48 pages, to appear in the journal "Theory and Practice of Logic
Programming
Polarization tomography of metallic nanohole arrays
We report polarization tomography experiments on metallic nanohole arrays
with square and hexagonal symmetry. As a main result, we find that a fully
polarized input beam is partly depolarized after transmission through a
nanohole array. This loss of polarization coherence is found to be anisotropic,
i.e. it depends on the polarization state of the input beam. The depolarization
is ascribed to a combination of two factors: i) the nonlocal response of the
array due to surface plasmon propagation, ii) the non-plane wave nature of a
practical input beam.Comment: 4 pages, 3 figures, 1 table, submitted to PR
Agility of vortex-based nanocontact spin torque oscillators
We study the agility of current-tunable oscillators based on a magnetic
vortex orbiting around a point contact in spin-valves. Theory predicts
frequency-tuning by currents occurs at constant orbital radius, so an
exceptional agility is anticipated. To test this, we have inserted an
oscillator in a microwave interferometer to apply abrupt current variations
while time resolving its emission. Using frequency shift keying, we show that
the oscillator can switch between two stabilized frequencies differing by 25%
in less than ten periods. With a wide frequency tunability and a good agility,
such oscillators possess desirable figures of merit for modulation-based rf
applications.Comment: 3 pages, 3 figure
Frequency shift keying in vortex-based spin torque oscillators
Vortex-based spin-torque oscillators can be made from extended spin valves
connected to an electrical nanocontact. We study the implementation of
frequency shift keying modulation in these oscillators. Upon a square
modulation of the current in the 10 MHz range, the vortex frequency follows the
current command, with easy identification of the two swapping frequencies in
the spectral measurements. The frequency distribution of the output power can
be accounted for by convolution transformations of the dc current vortex
waveform, and the current modulation. Modeling indicates that the frequency
transitions are phase coherent and last less than 25 ns. Complementing the
multi-octave tunability and first-class agility, the capability of frequency
shift keying modulation is an additional milestone for the implementation of
vortex-based oscillators in RF circuit.Comment: 6 pages, 5 figure
- …