568 research outputs found

    Adiabatic Faraday effect in a two-level Hamiltonian formalism

    Get PDF
    The helicity of a photon traversing a magnetized plasma can flip when the B-field along the trajectory slowly reverses. Broderick and Blandford have recently shown that this intriguing effect can profoundly change the usual Faraday effect for radio waves. We study this phenomenon in a formalism analogous to neutrino flavor oscillations: the evolution is governed by a Schroedinger equation for a two-level system consisting of the two photon helicities. Our treatment allows for a transparent physical understanding of this system and its dynamics. In particular, it allows us to investigate the nature of transitions at intermediate adiabaticities.Comment: 8 pages, 2 eps figures, and a note added. Title changed. Matches published versio

    On the Mass Eigenstate Composition of the 8B Neutrinos from the Sun

    Get PDF
    The present data of gallium experiments provide indirectly the only experimental limit on the fraction of ν2\nu_2 mass eigenstate for the 8^8B neutrinos from the Sun. However, if to use the experimental data alone, the fraction of ν2\nu_2 and, consequently, sin2θsolsin^2\theta_{sol} still is allowed to be varied within a rather broad range. The further experimental efforts are needed to clear this point.Comment: 13 pages, 1 figure, 1 table. Corrected version, published in JCAP04(2007)00

    What Fraction of Boron-8 Solar Neutrinos arrive at the Earth as a nu_2 mass eigenstate?

    Full text link
    We calculate the fraction of B^8 solar neutrinos that arrive at the Earth as a nu_2 mass eigenstate as a function of the neutrino energy. Weighting this fraction with the B^8 neutrino energy spectrum and the energy dependence of the cross section for the charged current interaction on deuteron with a threshold on the kinetic energy of the recoil electrons of 5.5 MeV, we find that the integrated weighted fraction of nu_2's to be 91 \pm 2 % at the 95% CL. This energy weighting procedure corresponds to the charged current response of the Sudbury Neutrino Observatory (SNO). We have used SNO's current best fit values for the solar mass squared difference and the mixing angle, obtained by combining the data from all solar neutrino experiments and the reactor data from KamLAND. The uncertainty on the nu_2 fraction comes primarily from the uncertainty on the solar delta m^2 rather than from the uncertainty on the solar mixing angle or the Standard Solar Model. Similar results for the Super-Kamiokande experiment are also given. We extend this analysis to three neutrinos and discuss how to extract the modulus of the Maki-Nakagawa-Sakata mixing matrix element U_{e2} as well as place a lower bound on the electron number density in the solar B^8 neutrino production region.Comment: 23 pages, 8 postscript figures, latex. Dedicated to the memory of John Bahcall who championed solar neutrinos for many lonely year

    Oscillations of high energy neutrinos in matter: Precise formalism and parametric resonance

    Full text link
    We present a formalism for precise description of oscillation phenomena in matter at high energies or high densities, V > \Delta m^2/2E, where V is the matter-induced potential of neutrinos. The accuracy of the approximation is determined by the quantity \sin^2 2\theta_m \Delta V/2\pi V, where \theta_m is the mixing angle in matter and \Delta V is a typical change of the potential over the oscillation length (l \sim 2\pi/V). We derive simple and physically transparent formulas for the oscillation probabilities, which are valid for arbitrary matter density profiles. They can be applied to oscillations of high energy (E > 10 GeV) accelerator, atmospheric and cosmic neutrinos in the matter of the Earth, substantially simplifying numerical calculations and providing an insight into the physics of neutrino oscillations in matter. The effect of parametric enhancement of the oscillations of high energy neutrinos is considered. Future high statistics experiments can provide an unambiguous evidence for this effect.Comment: LaTeX, 5 pages, 1 figure. Linestyles in the figure corrected to match their description in the caption; improved discussion of the accuracy of the results; references added. Results and conclusions unchange

    Flavored Quantum Boltzmann Equations

    Get PDF
    We derive from first principles, using non-equilibrium field theory, the quantum Boltzmann equations that describe the dynamics of flavor oscillations, collisions, and a time-dependent mass matrix in the early universe. Working to leading non-trivial order in ratios of relevant time scales, we study in detail a toy model for weak scale baryogenesis: two scalar species that mix through a slowly varying time-dependent and CP-violating mass matrix, and interact with a thermal bath. This model clearly illustrates how the CP asymmetry arises through coherent flavor oscillations in a non-trivial background. We solve the Boltzmann equations numerically for the density matrices, investigating the impact of collisions in various regimes.Comment: 41 pages, 7 figures. v2: references added, minor corrections and clarification

    Comparative analysis of the performance of selective and group repeat transmission modes in a transport protocol

    Get PDF
    We propose a model of a virtual connection controlled by a transport protocol in the selective and group failure modes as a Markov chain with discrete time that accounts for the influence of protocol parameters of window size and timeout duration for waiting for acknowledgements, probabilities of distorting segments in individual links of the data transmission path on the throughput of a transport connection. We have analyzed how the throughput of the control procedure depends on protocol parameters, level of errors in communication channels, and round-trip delay. We have proposed a method for choosing protocol parameters

    Neutrino Spin Transitions and the Violation of the Equivalence Principle

    Get PDF
    The violation of the equivalence principle (VEP) causing neutrino oscillations is of current interest. We study here the possibility of not only flavor oscillation but spin flavor oscillation of ultra high energy ( \sim 1 PeV) neutrinos emanating from AGN due to VEP and due to the presence of a large magnetic field ( \sim 1 Tesla) in AGN. In particular we look at the resonance spin flavor conversion driven by the AGN potential. Interesting bounds on the transition magnetic moment of neutrinos may therefore be obtained.Comment: Latex, 12 pages, no figures. To appear in Journal of Physics G: Nuclear and Particle Physics. Two references adde

    Propagation of axions in a strongly magnetized medium

    Get PDF
    The polarization operator of an axion in a degenerate gas of electrons occupying the ground-state Landau level in a superstrong magnetic field HH0=me2c3/e=4.411013H\gg H_0=m_e^2c^3/e\hbar =4.41\cdot 10^{13} G is investigated in a model with a tree-level axion-electron coupling. It is shown that a dynamic axion mass, which can fall within the allowed range of values (105eVma102eV)(10^{-5} eV \lesssim m_a\lesssim 10^{-2} eV), is generated under the conditions of strongly magnetized neutron stars. As a result, the dispersion relation for axions is appreciably different from that in a vacuum.Comment: RevTex, no figures, 13 pages, Revised version of the paper published in J. Exp. Theor. Phys. {\bf 88}, 1 (1999
    corecore