568 research outputs found
Adiabatic Faraday effect in a two-level Hamiltonian formalism
The helicity of a photon traversing a magnetized plasma can flip when the
B-field along the trajectory slowly reverses. Broderick and Blandford have
recently shown that this intriguing effect can profoundly change the usual
Faraday effect for radio waves. We study this phenomenon in a formalism
analogous to neutrino flavor oscillations: the evolution is governed by a
Schroedinger equation for a two-level system consisting of the two photon
helicities. Our treatment allows for a transparent physical understanding of
this system and its dynamics. In particular, it allows us to investigate the
nature of transitions at intermediate adiabaticities.Comment: 8 pages, 2 eps figures, and a note added. Title changed. Matches
published versio
On the Mass Eigenstate Composition of the 8B Neutrinos from the Sun
The present data of gallium experiments provide indirectly the only
experimental limit on the fraction of mass eigenstate for the B
neutrinos from the Sun. However, if to use the experimental data alone, the
fraction of and, consequently, still is allowed to
be varied within a rather broad range. The further experimental efforts are
needed to clear this point.Comment: 13 pages, 1 figure, 1 table. Corrected version, published in
JCAP04(2007)00
What Fraction of Boron-8 Solar Neutrinos arrive at the Earth as a nu_2 mass eigenstate?
We calculate the fraction of B^8 solar neutrinos that arrive at the Earth as
a nu_2 mass eigenstate as a function of the neutrino energy. Weighting this
fraction with the B^8 neutrino energy spectrum and the energy dependence of the
cross section for the charged current interaction on deuteron with a threshold
on the kinetic energy of the recoil electrons of 5.5 MeV, we find that the
integrated weighted fraction of nu_2's to be 91 \pm 2 % at the 95% CL. This
energy weighting procedure corresponds to the charged current response of the
Sudbury Neutrino Observatory (SNO). We have used SNO's current best fit values
for the solar mass squared difference and the mixing angle, obtained by
combining the data from all solar neutrino experiments and the reactor data
from KamLAND. The uncertainty on the nu_2 fraction comes primarily from the
uncertainty on the solar delta m^2 rather than from the uncertainty on the
solar mixing angle or the Standard Solar Model. Similar results for the
Super-Kamiokande experiment are also given. We extend this analysis to three
neutrinos and discuss how to extract the modulus of the Maki-Nakagawa-Sakata
mixing matrix element U_{e2} as well as place a lower bound on the electron
number density in the solar B^8 neutrino production region.Comment: 23 pages, 8 postscript figures, latex. Dedicated to the memory of
John Bahcall who championed solar neutrinos for many lonely year
Oscillations of high energy neutrinos in matter: Precise formalism and parametric resonance
We present a formalism for precise description of oscillation phenomena in
matter at high energies or high densities, V > \Delta m^2/2E, where V is the
matter-induced potential of neutrinos. The accuracy of the approximation is
determined by the quantity \sin^2 2\theta_m \Delta V/2\pi V, where \theta_m is
the mixing angle in matter and \Delta V is a typical change of the potential
over the oscillation length (l \sim 2\pi/V). We derive simple and physically
transparent formulas for the oscillation probabilities, which are valid for
arbitrary matter density profiles. They can be applied to oscillations of high
energy (E > 10 GeV) accelerator, atmospheric and cosmic neutrinos in the matter
of the Earth, substantially simplifying numerical calculations and providing an
insight into the physics of neutrino oscillations in matter. The effect of
parametric enhancement of the oscillations of high energy neutrinos is
considered. Future high statistics experiments can provide an unambiguous
evidence for this effect.Comment: LaTeX, 5 pages, 1 figure. Linestyles in the figure corrected to match
their description in the caption; improved discussion of the accuracy of the
results; references added. Results and conclusions unchange
Flavored Quantum Boltzmann Equations
We derive from first principles, using non-equilibrium field theory, the
quantum Boltzmann equations that describe the dynamics of flavor oscillations,
collisions, and a time-dependent mass matrix in the early universe. Working to
leading non-trivial order in ratios of relevant time scales, we study in detail
a toy model for weak scale baryogenesis: two scalar species that mix through a
slowly varying time-dependent and CP-violating mass matrix, and interact with a
thermal bath. This model clearly illustrates how the CP asymmetry arises
through coherent flavor oscillations in a non-trivial background. We solve the
Boltzmann equations numerically for the density matrices, investigating the
impact of collisions in various regimes.Comment: 41 pages, 7 figures. v2: references added, minor corrections and
clarification
Comparative analysis of the performance of selective and group repeat transmission modes in a transport protocol
We propose a model of a virtual connection controlled by a transport protocol in the selective and group failure modes as a Markov chain with discrete time that accounts for the influence of protocol parameters of window size and timeout duration for waiting for acknowledgements, probabilities of distorting segments in individual links of the data transmission path on the throughput of a transport connection. We have analyzed how the throughput of the control procedure depends on protocol parameters, level of errors in communication channels, and round-trip delay. We have proposed a method for choosing protocol parameters
Neutrino Spin Transitions and the Violation of the Equivalence Principle
The violation of the equivalence principle (VEP) causing neutrino
oscillations is of current interest. We study here the possibility of not only
flavor oscillation but spin flavor oscillation of ultra high energy ( 1
PeV) neutrinos emanating from AGN due to VEP and due to the presence of a large
magnetic field ( 1 Tesla) in AGN. In particular we look at the resonance
spin flavor conversion driven by the AGN potential. Interesting bounds on the
transition magnetic moment of neutrinos may therefore be obtained.Comment: Latex, 12 pages, no figures. To appear in Journal of Physics G:
Nuclear and Particle Physics. Two references adde
Propagation of axions in a strongly magnetized medium
The polarization operator of an axion in a degenerate gas of electrons
occupying the ground-state Landau level in a superstrong magnetic field G is investigated in a model with a
tree-level axion-electron coupling. It is shown that a dynamic axion mass,
which can fall within the allowed range of values , is generated under the conditions of strongly
magnetized neutron stars. As a result, the dispersion relation for axions is
appreciably different from that in a vacuum.Comment: RevTex, no figures, 13 pages, Revised version of the paper published
in J. Exp. Theor. Phys. {\bf 88}, 1 (1999
- …