5,457 research outputs found

    Integrability of the Minimal Strain Equations for the Lapse and Shift in 3+1 Numerical Relativity

    Full text link
    Brady, Creighton and Thorne have argued that, in numerical relativity simulations of the inspiral of binary black holes, if one uses lapse and shift functions satisfying the ``minimal strain equations'' (MSE), then the coordinates might be kept co-rotating, the metric components would then evolve on the very slow inspiral timescale, and the computational demands would thus be far smaller than for more conventional slicing choices. In this paper, we derive simple, testable criteria for the MSE to be strongly elliptic, thereby guaranteeing the existence and uniqueness of the solution to the Dirichlet boundary value problem. We show that these criteria are satisfied in a test-bed metric for inspiraling binaries, and we argue that they should be satisfied quite generally for inspiraling binaries. If the local existence and uniqueness that we have proved holds globally, then, for appropriate boundary values, the solution of the MSE exhibited by Brady et. al. (which tracks the inspiral and keeps the metric evolving slowly) will be the unique solution and thus should be reproduced by (sufficiently accurate and stable) numerical integrations.Comment: 6 pages; RevTeX; submitted to Phys. Rev. D15. Technical issue of the uniqueness of the solution to the Dirichlet problem clarified. New subsection on the nature of the boundary dat

    Numerical investigation of black hole interiors

    Get PDF
    Gravitational perturbations which are present in any realistic stellar collapse to a black hole, die off in the exterior of the hole, but experience an infinite blueshift in the interior. This is believed to lead to a slowly contracting lightlike scalar curvature singularity, characterized by a divergence of the hole's (quasi-local) mass function along the inner horizon. The region near the inner horizon is described to great accuracy by a plane wave spacetime. While Einstein's equations for this metric are still too complicated to be solved in closed form it is relatively simple to integrate them numerically. We find for generic regular initial data the predicted mass inflation type null singularity, rather than a spacelike singularity. It thus seems that mass inflation indeed represents a generic self-consistent picture of the black hole interior.Comment: 6 pages LaTeX, 3 eps figure

    Gauge symmetry breaking on orbifolds

    Full text link
    We discuss a new method for gauge symmetry breaking in theories with one extra dimension compactified on the orbifold S^1/Z_2. If we assume that fields and their derivatives can jump at the orbifold fixed points, we can implement a generalized Scherk-Schwarz mechanism that breaks the gauge symmetry. We show that our model with discontinuous fields is equivalent to another with continuous but non periodic fields; in our scheme localized lagrangian terms for bulk fields appear.Comment: 6 pages, 2 figures. Talk given at the XXXVIIth Rencontres de Moriond, "Electroweak interactions and unified theories", Les Arcs, France, 9-16 Mar 2002. Minor changes, one reference adde

    Quasi-normal modes of Schwarzschild-de Sitter black holes

    Full text link
    The low-laying frequencies of characteristic quasi-normal modes (QNM) of Schwarzschild-de Sitter (SdS) black holes have been calculated for fields of different spin using the 6th-order WKB approximation and the approximation by the P\"{o}shl-Teller potential. The well-known asymptotic formula for large ll is generalized here on a case of the Schwarzchild-de Sitter black hole. In the limit of the near extreme Λ\Lambda term the results given by both methods are in a very good agreement, and in this limit fields of different spin decay with the same rate.Comment: 9 pages, 1 ancillary Mathematica(R) noteboo

    Decay of charged scalar field around a black hole: quasinormal modes of R-N, R-N-AdS and dilaton black holes

    Full text link
    It is well known that the charged scalar perturbations of the Reissner-Nordstrom metric will decay slower at very late times than the neutral ones, thereby dominating in the late time signal. We show that at the stage of quasinormal ringing, on the contrary, the neutral perturbations will decay slower for RN, RNAdS and dilaton black holes. The QN frequencies of the nearly extreme RN black hole have the same imaginary parts (damping times) for charged and neutral perturbations. An explanation of this fact is not clear but, possibly, is connected with the Choptuik scaling.Comment: 10 pages, LaTeX, 4 figures, considerable changes made and wrong interpretation of computations correcte

    Self-Similar Collapse of Scalar Field in Higher Dimensions

    Get PDF
    This paper constructs continuously self-similar solution of a spherically symmetric gravitational collapse of a scalar field in n dimensions. The qualitative behavior of these solutions is explained, and closed-form answers are provided where possible. Equivalence of scalar field couplings is used to show a way to generalize minimally coupled scalar field solutions to the model with general coupling.Comment: RevTex 3.1, 15 pages, 3 figures; references adde

    Are HIV smartphone apps and online interventions fit for purpose?

    Get PDF
    Sexual health is an under-explored area of Human-Computer Interaction (HCI), particularly sexually transmitted infections such as HIV. Due to the stigma associated with these infections, people are often motivated to seek information online. With the rise of smartphone and web apps, there is enormous potential for technology to provide easily accessible information and resources. However, using online information raises important concerns about the trustworthiness of these resources and whether they are fit for purpose. We conducted a review of smartphone and web apps to investigate the landscape of currently available online apps and whether they meet the diverse needs of people seeking information on HIV online. Our functionality review revealed that existing technology interventions have a one-size-fits-all approach and do not support the breadth and complexity of HIV-related support needs. We argue that technology-based interventions need to signpost their offering and provide tailored support for different stages of HIV, including prevention, testing, diagnosis and management

    Black hole formation from massive scalar fields

    Get PDF
    It is shown that there exists a range of parameters in which gravitational collapse with a spherically symmetric massive scalar field can be treated as if it were collapsing dust. This implies a criterion for the formation of black holes depending on the size and mass of the initial field configuration and the mass of the scalar field.Comment: 11 pages, RevTeX, 3 eps figures. Submitted to Class. Quantum Gra

    Continuous Self-Similarity Breaking in Critical Collapse

    Full text link
    This paper studies near-critical evolution of the spherically symmetric scalar field configurations close to the continuously self-similar solution. Using analytic perturbative methods, it is shown that a generic growing perturbation departs from the critical Roberts solution in a universal way. We argue that in the course of its evolution, initial continuous self-similarity of the background is broken into discrete self-similarity with echoing period Δ=2π=4.44\Delta = \sqrt{2}\pi = 4.44, reproducing the symmetries of the critical Choptuik solution.Comment: RevTeX 3.1, 28 pages, 5 figures; discussion rewritten to clarify several issue
    • …
    corecore