327 research outputs found

    Average-Case Optimal Approximate Circular String Matching

    Full text link
    Approximate string matching is the problem of finding all factors of a text t of length n that are at a distance at most k from a pattern x of length m. Approximate circular string matching is the problem of finding all factors of t that are at a distance at most k from x or from any of its rotations. In this article, we present a new algorithm for approximate circular string matching under the edit distance model with optimal average-case search time O(n(k + log m)/m). Optimal average-case search time can also be achieved by the algorithms for multiple approximate string matching (Fredriksson and Navarro, 2004) using x and its rotations as the set of multiple patterns. Here we reduce the preprocessing time and space requirements compared to that approach

    Improved Algorithms for Approximate String Matching (Extended Abstract)

    Get PDF
    The problem of approximate string matching is important in many different areas such as computational biology, text processing and pattern recognition. A great effort has been made to design efficient algorithms addressing several variants of the problem, including comparison of two strings, approximate pattern identification in a string or calculation of the longest common subsequence that two strings share. We designed an output sensitive algorithm solving the edit distance problem between two strings of lengths n and m respectively in time O((s-|n-m|)min(m,n,s)+m+n) and linear space, where s is the edit distance between the two strings. This worst-case time bound sets the quadratic factor of the algorithm independent of the longest string length and improves existing theoretical bounds for this problem. The implementation of our algorithm excels also in practice, especially in cases where the two strings compared differ significantly in length. Source code of our algorithm is available at http://www.cs.miami.edu/\~dimitris/edit_distanceComment: 10 page

    MOODS: fast search for position weight matrix matches in DNA sequences

    Get PDF
    Summary: MOODS (MOtif Occurrence Detection Suite) is a software package for matching position weight matrices against DNA sequences. MOODS implements state-of-the-art online matching algorithms, achieving considerably faster scanning speed than with a simple brute-force search. MOODS is written in C++, with bindings for the popular BioPerl and Biopython toolkits. It can easily be adapted for different purposes and integrated into existing workflows. It can also be used as a C++ library

    Faster Approximate String Matching for Short Patterns

    Full text link
    We study the classical approximate string matching problem, that is, given strings PP and QQ and an error threshold kk, find all ending positions of substrings of QQ whose edit distance to PP is at most kk. Let PP and QQ have lengths mm and nn, respectively. On a standard unit-cost word RAM with word size wlognw \geq \log n we present an algorithm using time O(nkmin(log2mlogn,log2mlogww)+n) O(nk \cdot \min(\frac{\log^2 m}{\log n},\frac{\log^2 m\log w}{w}) + n) When PP is short, namely, m=2o(logn)m = 2^{o(\sqrt{\log n})} or m=2o(w/logw)m = 2^{o(\sqrt{w/\log w})} this improves the previously best known time bounds for the problem. The result is achieved using a novel implementation of the Landau-Vishkin algorithm based on tabulation and word-level parallelism.Comment: To appear in Theory of Computing System

    Dictionary Matching with One Gap

    Full text link
    The dictionary matching with gaps problem is to preprocess a dictionary DD of dd gapped patterns P1,,PdP_1,\ldots,P_d over alphabet Σ\Sigma, where each gapped pattern PiP_i is a sequence of subpatterns separated by bounded sequences of don't cares. Then, given a query text TT of length nn over alphabet Σ\Sigma, the goal is to output all locations in TT in which a pattern PiDP_i\in D, 1id1\leq i\leq d, ends. There is a renewed current interest in the gapped matching problem stemming from cyber security. In this paper we solve the problem where all patterns in the dictionary have one gap with at least α\alpha and at most β\beta don't cares, where α\alpha and β\beta are given parameters. Specifically, we show that the dictionary matching with a single gap problem can be solved in either O(dlogd+D)O(d\log d + |D|) time and O(dlogεd+D)O(d\log^{\varepsilon} d + |D|) space, and query time O(n(βα)loglogdlog2min{d,logD}+occ)O(n(\beta -\alpha )\log\log d \log ^2 \min \{ d, \log |D| \} + occ), where occocc is the number of patterns found, or preprocessing time and space: O(d2+D)O(d^2 + |D|), and query time O(n(βα)+occ)O(n(\beta -\alpha ) + occ), where occocc is the number of patterns found. As far as we know, this is the best solution for this setting of the problem, where many overlaps may exist in the dictionary.Comment: A preliminary version was published at CPM 201

    Suffix Tree of Alignment: An Efficient Index for Similar Data

    Full text link
    We consider an index data structure for similar strings. The generalized suffix tree can be a solution for this. The generalized suffix tree of two strings AA and BB is a compacted trie representing all suffixes in AA and BB. It has A+B|A|+|B| leaves and can be constructed in O(A+B)O(|A|+|B|) time. However, if the two strings are similar, the generalized suffix tree is not efficient because it does not exploit the similarity which is usually represented as an alignment of AA and BB. In this paper we propose a space/time-efficient suffix tree of alignment which wisely exploits the similarity in an alignment. Our suffix tree for an alignment of AA and BB has A+ld+l1|A| + l_d + l_1 leaves where ldl_d is the sum of the lengths of all parts of BB different from AA and l1l_1 is the sum of the lengths of some common parts of AA and BB. We did not compromise the pattern search to reduce the space. Our suffix tree can be searched for a pattern PP in O(P+occ)O(|P|+occ) time where occocc is the number of occurrences of PP in AA and BB. We also present an efficient algorithm to construct the suffix tree of alignment. When the suffix tree is constructed from scratch, the algorithm requires O(A+ld+l1+l2)O(|A| + l_d + l_1 + l_2) time where l2l_2 is the sum of the lengths of other common substrings of AA and BB. When the suffix tree of AA is already given, it requires O(ld+l1+l2)O(l_d + l_1 + l_2) time.Comment: 12 page

    Efficient LZ78 factorization of grammar compressed text

    Full text link
    We present an efficient algorithm for computing the LZ78 factorization of a text, where the text is represented as a straight line program (SLP), which is a context free grammar in the Chomsky normal form that generates a single string. Given an SLP of size nn representing a text SS of length NN, our algorithm computes the LZ78 factorization of TT in O(nN+mlogN)O(n\sqrt{N}+m\log N) time and O(nN+m)O(n\sqrt{N}+m) space, where mm is the number of resulting LZ78 factors. We also show how to improve the algorithm so that the nNn\sqrt{N} term in the time and space complexities becomes either nLnL, where LL is the length of the longest LZ78 factor, or (Nα)(N - \alpha) where α0\alpha \geq 0 is a quantity which depends on the amount of redundancy that the SLP captures with respect to substrings of SS of a certain length. Since m=O(N/logσN)m = O(N/\log_\sigma N) where σ\sigma is the alphabet size, the latter is asymptotically at least as fast as a linear time algorithm which runs on the uncompressed string when σ\sigma is constant, and can be more efficient when the text is compressible, i.e. when mm and nn are small.Comment: SPIRE 201

    Duration of shedding of respiratory syncytial virus in a community study of Kenyan children

    Get PDF
    Background: Our understanding of the transmission dynamics of respiratory syncytial virus (RSV) infection will be better informed with improved data on the patterns of shedding in cases not limited only to hospital admissions. Methods: In a household study, children testing RSV positive by direct immunofluorescent antibody test (DFA) were enrolled. Nasal washings were scheduled right away, then every three days until day 14, every 7 days until day 28 and every 2 weeks until a maximum of 16 weeks, or until the first DFA negative RSV specimen. The relationship between host factors, illness severity and viral shedding was investigated using Cox regression methods. Results: From 151 families a total of 193 children were enrolled with a median age of 21 months (range 1-164 months), 10% infants and 46% male. The rate of recovery from infection was 0.22/person/day (95% CI 0.19-0.25) equivalent to a mean duration of shedding of 4.5 days (95%CI 4.0-5.3), with a median duration of shedding of 4 days (IQR 2-6, range 1-14). Children with a history of RSV infection had a 40% increased rate of recovery i.e. shorter duration of viral shedding (hazard ratio 1.4, 95% CI 1.01-1.86). The rate of cessation of shedding did not differ significantly between males and females, by severity of infection or by age. Conclusion: We provide evidence of a relationship between the duration of shedding and history of infection, which may have a bearing on the relative role of primary versus re-infections in RSV transmission in the community

    Probabilistic modeling and machine learning in structural and systems biology

    Get PDF
    This supplement contains extended versions of a selected subset of papers presented at the workshop PMSB 2007, Probabilistic Modeling and Machine Learning in Structural and Systems Biology, Tuusula, Finland, from June 17 to 18, 2006
    corecore