327 research outputs found
Average-Case Optimal Approximate Circular String Matching
Approximate string matching is the problem of finding all factors of a text t
of length n that are at a distance at most k from a pattern x of length m.
Approximate circular string matching is the problem of finding all factors of t
that are at a distance at most k from x or from any of its rotations. In this
article, we present a new algorithm for approximate circular string matching
under the edit distance model with optimal average-case search time O(n(k + log
m)/m). Optimal average-case search time can also be achieved by the algorithms
for multiple approximate string matching (Fredriksson and Navarro, 2004) using
x and its rotations as the set of multiple patterns. Here we reduce the
preprocessing time and space requirements compared to that approach
Improved Algorithms for Approximate String Matching (Extended Abstract)
The problem of approximate string matching is important in many different
areas such as computational biology, text processing and pattern recognition. A
great effort has been made to design efficient algorithms addressing several
variants of the problem, including comparison of two strings, approximate
pattern identification in a string or calculation of the longest common
subsequence that two strings share.
We designed an output sensitive algorithm solving the edit distance problem
between two strings of lengths n and m respectively in time
O((s-|n-m|)min(m,n,s)+m+n) and linear space, where s is the edit distance
between the two strings. This worst-case time bound sets the quadratic factor
of the algorithm independent of the longest string length and improves existing
theoretical bounds for this problem. The implementation of our algorithm excels
also in practice, especially in cases where the two strings compared differ
significantly in length. Source code of our algorithm is available at
http://www.cs.miami.edu/\~dimitris/edit_distanceComment: 10 page
MOODS: fast search for position weight matrix matches in DNA sequences
Summary: MOODS (MOtif Occurrence Detection Suite) is a software package for matching position weight matrices against DNA sequences. MOODS implements state-of-the-art online matching algorithms, achieving considerably faster scanning speed than with a simple brute-force search. MOODS is written in C++, with bindings for the popular BioPerl and Biopython toolkits. It can easily be adapted for different purposes and integrated into existing workflows. It can also be used as a C++ library
Faster Approximate String Matching for Short Patterns
We study the classical approximate string matching problem, that is, given
strings and and an error threshold , find all ending positions of
substrings of whose edit distance to is at most . Let and
have lengths and , respectively. On a standard unit-cost word RAM with
word size we present an algorithm using time When is
short, namely, or this
improves the previously best known time bounds for the problem. The result is
achieved using a novel implementation of the Landau-Vishkin algorithm based on
tabulation and word-level parallelism.Comment: To appear in Theory of Computing System
Dictionary Matching with One Gap
The dictionary matching with gaps problem is to preprocess a dictionary
of gapped patterns over alphabet , where each
gapped pattern is a sequence of subpatterns separated by bounded
sequences of don't cares. Then, given a query text of length over
alphabet , the goal is to output all locations in in which a
pattern , , ends. There is a renewed current interest
in the gapped matching problem stemming from cyber security. In this paper we
solve the problem where all patterns in the dictionary have one gap with at
least and at most don't cares, where and are
given parameters. Specifically, we show that the dictionary matching with a
single gap problem can be solved in either time and
space, and query time , where is the number
of patterns found, or preprocessing time and space: , and query
time , where is the number of patterns found.
As far as we know, this is the best solution for this setting of the problem,
where many overlaps may exist in the dictionary.Comment: A preliminary version was published at CPM 201
Suffix Tree of Alignment: An Efficient Index for Similar Data
We consider an index data structure for similar strings. The generalized
suffix tree can be a solution for this. The generalized suffix tree of two
strings and is a compacted trie representing all suffixes in and
. It has leaves and can be constructed in time.
However, if the two strings are similar, the generalized suffix tree is not
efficient because it does not exploit the similarity which is usually
represented as an alignment of and .
In this paper we propose a space/time-efficient suffix tree of alignment
which wisely exploits the similarity in an alignment. Our suffix tree for an
alignment of and has leaves where is the sum of
the lengths of all parts of different from and is the sum of the
lengths of some common parts of and . We did not compromise the pattern
search to reduce the space. Our suffix tree can be searched for a pattern
in time where is the number of occurrences of in and
. We also present an efficient algorithm to construct the suffix tree of
alignment. When the suffix tree is constructed from scratch, the algorithm
requires time where is the sum of the lengths
of other common substrings of and . When the suffix tree of is
already given, it requires time.Comment: 12 page
Efficient LZ78 factorization of grammar compressed text
We present an efficient algorithm for computing the LZ78 factorization of a
text, where the text is represented as a straight line program (SLP), which is
a context free grammar in the Chomsky normal form that generates a single
string. Given an SLP of size representing a text of length , our
algorithm computes the LZ78 factorization of in time
and space, where is the number of resulting LZ78 factors.
We also show how to improve the algorithm so that the term in the
time and space complexities becomes either , where is the length of the
longest LZ78 factor, or where is a quantity
which depends on the amount of redundancy that the SLP captures with respect to
substrings of of a certain length. Since where
is the alphabet size, the latter is asymptotically at least as fast as
a linear time algorithm which runs on the uncompressed string when is
constant, and can be more efficient when the text is compressible, i.e. when
and are small.Comment: SPIRE 201
Duration of shedding of respiratory syncytial virus in a community study of Kenyan children
Background: Our understanding of the transmission dynamics of respiratory syncytial virus (RSV) infection will be better informed with improved data on the patterns of shedding in cases not limited only to hospital admissions.
Methods: In a household study, children testing RSV positive by direct immunofluorescent antibody test (DFA) were enrolled. Nasal washings were scheduled right away, then every three days until day 14, every 7 days until day 28 and every 2 weeks until a maximum of 16 weeks, or until the first DFA negative RSV specimen. The relationship between host factors, illness severity and viral shedding was investigated using Cox regression methods.
Results: From 151 families a total of 193 children were enrolled with a median age of 21 months (range 1-164 months), 10% infants and 46% male. The rate of recovery from infection was 0.22/person/day (95% CI 0.19-0.25) equivalent to a mean duration of shedding of 4.5 days (95%CI 4.0-5.3), with a median duration of shedding of 4 days (IQR 2-6, range 1-14). Children with a history of RSV infection had a 40% increased rate of recovery i.e. shorter duration of viral shedding (hazard ratio 1.4, 95% CI 1.01-1.86). The rate of cessation of shedding did not differ significantly between males and females, by severity of infection or by age.
Conclusion: We provide evidence of a relationship between the duration of shedding and history of infection, which may have a bearing on the relative role of primary versus re-infections in RSV transmission in the community
Probabilistic modeling and machine learning in structural and systems biology
This supplement contains extended versions of a selected subset of papers presented at the workshop PMSB 2007, Probabilistic Modeling and Machine Learning in Structural and Systems Biology, Tuusula, Finland, from June 17 to 18, 2006
- …