6 research outputs found

    High temperature and stress corrosion cracking of 310S austenitic stainless steel in wet chloride corrosive environment

    Get PDF
    High temperature corrosion and stress corrosion cracking of 310S austenitic stainless steel in wet chloride environment at a high temperature was investigated. The result showed that high temperature corrosion products mostly consisted of ferrous oxides and chromium oxides. Chloride ions attacked a chromium passive film and strongly reacted with iron and chromium. As a result of metal chlorides being volatized, tunnel of pores inside corrosion layer existed. Intergranular stress corrosion cracking was observed. The oxide originated on surface could act as a crack initiator and a crack propagation would progress along grain boundaries and particularly along tunnel of pores

    Optimising steel production schedules via a hierarchical genetic algorithm

    No full text
    This paper presents an effective scheduling in a steel-making continuous casting (SCC) plant. The main contribution of this paper is the formulation of a new optimisation model that more closely represents real-world situations, and a hierarchical genetic algorithm (HGA) tailored particularly for searching for an optimal SCC schedule. The optimisation model is developed by integrating two main planning phases of traditional scheduling: (1) planning cast sequence, and (2) scheduling of steel-making and timing of all jobs. A novel procedure is given for genetic algorithm (GA) chromosome coding that maps Gantt chart and hierarchical chromosomes. The performance of the proposed methodology is illustrated and compared with a two-phase traditional scheduling and a standard GA toolbox. Both qualitative and quantitative performance measures are investigated
    corecore