1,839 research outputs found
Experimental realization of Dicke states of up to six qubits for multiparty quantum networking
We report the first experimental generation and characterization of a
six-photon Dicke state. The produced state shows a fidelity of F=0.56+/-0.02
with respect to an ideal Dicke state and violates a witness detecting genuine
six-qubit entanglement by four standard deviations. We confirm characteristic
Dicke properties of our resource and demonstrate its versatility by projecting
out four- and five-photon Dicke states, as well as four-photon GHZ and W
states. We also show that Dicke states have interesting applications in
multiparty quantum networking protocols such as open-destination teleportation,
telecloning and quantum secret sharing.Comment: 4 pages, 4 figures, RevTeX
Quantum plasmonics model of refractive index sensing using photon correlations
The interaction between the electric dipole moments of a quantum emitter and
a metal nanoparticle gives rise to unique optical properties, such as
interference-induced photon correlations, that could be useful for enhanced
intensity-based sensing. Using the quantum theory of photodetection, we propose
a nanosensor system comprising a quantum emitter and a metal nanoparticle that
explores the possibility of utilizing higher-order photon correlations for
refractive index sensing. Both the refractive index sensitivity and resolution
of the nanosensor, whose scattering spectrum lies within the visible region,
are predicted. The sensor is supported by a substrate and driven weakly by a
coherent field. By calculating the mean photocount and its second factorial
moment resulting from the scattered field of the system, the sensing
performance of the intensity and intensity-intensity correlation, are compared
at optimal driving wavelengths. The mean photocount was found to be inherently
low, inhibiting the role of interference-induced photon antibunching in
minimizing the sensor's intensity shot noise. However, a regime in which the
noise could be reduced below the shot noise limit is identified, leading to a
quantum enhancement in the sensing performance.Comment: 14 pages, 8 figures, supplementary materia
Dynamics of Quintessence Models of Dark Energy with Exponential Coupling to the Dark Matter
We explore quintessence models of dark energy which exhibit non-minimal
coupling between the dark matter and the dark energy components of the cosmic
fluid. The kind of coupling chosen is inspired in scalar-tensor theories of
gravity. We impose a suitable dynamics of the expansion allowing to derive
exact Friedmann-Robertson-Walker solutions once the coupling function is given
as input. Self-interaction potentials of single and double exponential types
emerge as result of our choice of the coupling function. The stability and
existence of the solutions is discussed in some detail. Although, in general,
models with appropriated interaction between the components of the cosmic
mixture are useful to handle the coincidence problem, in the present study the
coincidence can not be evaded due to the choice of the solution generating
ansatz.Comment: 10 pages, 7 figure
The Measurement Calculus
Measurement-based quantum computation has emerged from the physics community
as a new approach to quantum computation where the notion of measurement is the
main driving force of computation. This is in contrast with the more
traditional circuit model which is based on unitary operations. Among
measurement-based quantum computation methods, the recently introduced one-way
quantum computer stands out as fundamental.
We develop a rigorous mathematical model underlying the one-way quantum
computer and present a concrete syntax and operational semantics for programs,
which we call patterns, and an algebra of these patterns derived from a
denotational semantics. More importantly, we present a calculus for reasoning
locally and compositionally about these patterns.
We present a rewrite theory and prove a general standardization theorem which
allows all patterns to be put in a semantically equivalent standard form.
Standardization has far-reaching consequences: a new physical architecture
based on performing all the entanglement in the beginning, parallelization by
exposing the dependency structure of measurements and expressiveness theorems.
Furthermore we formalize several other measurement-based models:
Teleportation, Phase and Pauli models and present compositional embeddings of
them into and from the one-way model. This allows us to transfer all the theory
we develop for the one-way model to these models. This shows that the framework
we have developed has a general impact on measurement-based computation and is
not just particular to the one-way quantum computer.Comment: 46 pages, 2 figures, Replacement of quant-ph/0412135v1, the new
version also include formalization of several other measurement-based models:
Teleportation, Phase and Pauli models and present compositional embeddings of
them into and from the one-way model. To appear in Journal of AC
Heralded generation of entangled photon pairs
Entangled photons are a crucial resource for quantum communication and linear
optical quantum computation. Unfortunately, the applicability of many
photon-based schemes is limited due to the stochastic character of the photon
sources. Therefore, a worldwide effort has focused in overcoming the limitation
of probabilistic emission by generating two-photon entangled states conditioned
on the detection of auxiliary photons. Here we present the first heralded
generation of photon states that are maximally entangled in polarization with
linear optics and standard photon detection from spontaneous parametric
down-conversion. We utilize the down-conversion state corresponding to the
generation of three photon pairs, where the coincident detection of four
auxiliary photons unambiguously heralds the successful preparation of the
entangled state. This controlled generation of entangled photon states is a
significant step towards the applicability of a linear optics quantum network,
in particular for entanglement swapping, quantum teleportation, quantum
cryptography and scalable approaches towards photonics-based quantum computing
One-way quantum computing in a decoherence-free subspace
We introduce a novel scheme for one-way quantum computing (QC) based on the
use of information encoded qubits in an effective cluster state resource. With
the correct encoding structure, we show that it is possible to protect the
entangled resource from phase damping decoherence, where the effective cluster
state can be described as residing in a Decoherence-Free Subspace (DFS) of its
supporting quantum system. One-way QC then requires either single or two-qubit
adaptive measurements. As an example where this proposal can be realized, we
describe an optical lattice setup where the scheme provides robust quantum
information processing. We also outline how one can adapt the model to provide
protection from other types of decoherence.Comment: 9 pages, 4 figures, RevTeX
The CF-Sputum Induction Trial (CF-SpIT) to assess lower airway bacterial sampling in young children with cystic fibrosis: a prospective internally controlled interventional trial
Background Pathogen surveillance is challenging but crucial in children with cystic fibrosisâwho are often nonproductive of sputum even if actively coughingâbecause infection and lung disease begin early in life. The role of sputum induction as a diagnostic tool for infection has not previously been systematically addressed in young children with cystic fibrosis. We aimed to assess the pathogen yield from sputum induction compared with that from cough swab and single-lobe, two-lobe, and six-lobe bronchoalveolar lavage. Methods This prospective internally controlled interventional trial was done at the Childrenâs Hospital for Wales (Cardiff, UK) in children with cystic fibrosis aged between 6 months and 18 years. Samples from cough swab, sputum induction, and single-lobe, two-lobe, and six-lobe bronchoalveolar lavage were matched for within-patient comparisons. Primary outcomes were comparative pathogen yield between sputum induction and cough swab for stage 1, and between sputum induction, and single-lobe, two-lobe, and six-lobe bronchoalveolar lavage for stage 2. Data were analysed as per protocol. This study is registered with the UK Clinical Research Network (14615) and with the International Standard Randomised Controlled Trial Network Registry (12473810). Findings Between Jan 23, 2012, and July 4, 2017, 124 patients were prospectively recruited to the trial and had 200 sputum induction procedures for stage 1. 167 (84%) procedures were successful and the procedure was well tolerated. Of the 167 paired samples, 63 (38%) sputum-induction samples were pathogen positive compared with 24 (14%) cough swabs (p<0·0001; odds ratio [OR] 7·5; 95% CI 3·19â17·98). More pathogens were isolated from sputum induction than cough swab (79 [92%] of 86 vs 27 [31%] of 86; p<0·0001). For stage 2, 35 patients had a total of 41 paired sputum-induction and bronchoalveolar lavage procedures. Of the 41 paired samples, 28 (68%) were positive for at least one of the concurrent samples. 39 pathogens were isolated. Sputum induction identified 27 (69%) of the 39 pathogens, compared with 22 (56%; p=0·092; OR 3·3, 95% CI 0·91â12·11) on single-lobe, 28 (72%; p=1·0; OR 1·1, 95% CI 0·41â3·15) on two-lobe, and 33 (85%; p=0·21; OR 2·2, 95% CI 0·76â6·33) on six-lobe bronchoalveolar lavage. Interpretation Sputum induction is superior to cough swab for pathogen detection, is effective at sampling the lower airway, and is a credible surrogate for bronchoalveolar lavage in symptomatic children. A substantial number of bronchoscopies could be avoided if sputum induction is done first and pathogens are appropriately treated. Both sputum induction and six-lobe bronchoalveolar lavage provide independent, sizeable gains in pathogen detection compared with the current gold-standard two-lobe bronchoalveolar lavage. We propose that sputum induction and six-lobe bronchoalveolar lavage combined are used as standard of care for comprehensive lower airway pathogen detection in children with cystic fibrosis
Quantum Statistics of Surface Plasmon Polaritons in Metallic Stripe Waveguides
Single surface plasmon polaritons are excited using photons generated via
spontaneous parametric down-conversion. The mean excitation rates, intensity
correlations and Fock state populations are studied. The observed dependence of
the second order coherence in our experiment is consistent with a linear
uncorrelated Markovian environment in the quantum regime. Our results provide
important information about the effect of loss for assessing the potential of
plasmonic waveguides for future nanophotonic circuitry in the quantum regime.Comment: 21 pages, 6 figures, published in Nano Letters, publication date
(web): March 27 (2012
A model of the Universe including Dark Energy accounted for by both a Quintessence Field and a (negative) Cosmological Constant
In this work we present a model of the universe in which dark energy is
modelled explicitely with both a dynamical quintessence field and a
cosmological constant. Our results confirm the possibility of a future
collapsing universe (for a given region of the parameter space), which is
necessary for a consistent formulation of string theory and quantum field
theory. We have also reproduced the measurements of modulus distance from
supernovae with good accuracy.Comment: 11 pages, 4 figures, only the results for the single exponential
potential are preserved. One author added. Some changes in the reference
section. Submitted to Physical Review
- âŠ