2,793 research outputs found
Matching of analytical and numerical solutions for neutron stars of arbitrary rotation
We demonstrate the results of an attempt to match the two-soliton analytical
solution with the numerically produced solutions of the Einstein field
equations, that describe the spacetime exterior of rotating neutron stars, for
arbitrary rotation. The matching procedure is performed by equating the first
four multipole moments of the analytical solution to the multipole moments of
the numerical one. We then argue that in order to check the effectiveness of
the matching of the analytical with the numerical solution we should compare
the metric components, the radius of the innermost stable circular orbit
(), the rotation frequency and the
epicyclic frequencies . Finally we present some
results of the comparison.Comment: Contribution at the 13th Conference on Recent Developments in Gravity
(NEB XIII), corrected typo in of eq. 5 of the published versio
Faithful transformation of quasi-isotropic to Weyl-Papapetrou coordinates: A prerequisite to compare metrics
We demonstrate how one should transform correctly quasi-isotropic coordinates
to Weyl-Papapetrou coordinates in order to compare the metric around a rotating
star that has been constructed numerically in the former coordinates with an
axially symmetric stationary metric that is given through an analytical form in
the latter coordinates. Since a stationary metric associated with an isolated
object that is built numerically partly refers to a non-vacuum solution
(interior of the star) the transformation of its coordinates to Weyl-Papapetrou
coordinates, which are usually used to describe vacuum axisymmetric and
stationary solutions of Einstein equations, is not straightforward in the
non-vacuum region. If this point is \textit{not} taken into consideration, one
may end up to erroneous conclusions about how well a specific analytical metric
matches the metric around the star, due to fallacious coordinate
transformations.Comment: 18 pages, 2 figure
Extending Sibgatullin's ansatz for the Ernst potential to generate a richer family of axially symmetric solutions of Einstein's equations
The scope of this talk is to present some preliminary results on an effort,
currently in progress, to generate an exact solution of Einstein's equation,
suitable for describing spacetime around a rotating compact object.
Specifically, the form of the Ernst potential on the symmetry axis and its
connection with the multipole moments is discussed thoroughly. The way to
calculate the multipole moments of spacetime directly from the value of the
Ernst potential on the symmetry axis is presented. Finally, a mixed ansatz is
formed for the Ernst potential including parameters additional to the ones
dictated by Sibgatullin. Thus, we believe that this talk can also serve as a
comment on choosing the appropriate ansatz for the Ernst potential.Comment: Talk given in the 11th Conference on Recent Developments in Gravity,
2-5 June 2004, Lesbos, Greec
Evaluation of a Spyware Detection System Using Thin Client Computing
In previous work, we introduced a bait injection system designed to delude and detect crimeware by forcing it to reveal itself during the exploitation of monitored information. Although effective as a technique, our original system was practically limited, as it was implemented in a personal VM environment. In this paper, we extend our system by applying it to thin-clien to demonstrate how the approach can be used in a large-scale deployment. Adapting our system to such an environment revealed a number of challenging issues, such as scalability, portability, and choice of physical communication means. We provide implementation details, as well as experimental results that demonstrate the scalability and effectiveness of our system
Reversal of hepatorenal syndrome type 1 with terlipressin plus albumin vs. placebo plus albumin in a pooled analysis of the OT-0401 and REVERSE randomised clinical studies
Background
The goal of hepatorenal syndrome type 1 (HRS-1) treatment is to improve renal function. Terlipressin, a synthetic vasopressin analogue, is a systemic vasoconstrictor used for the treatment of HRS-1, where it is available. Aim
To compare the efficacy of terlipressin plus albumin vs. placebo plus albumin in patients with HRS-1. Methods
Pooled patient-level data from two large phase 3, randomised, placebo-controlled studies were analysed for HRS reversal [serum creatinine (SCr) value ≤133 μmol/L], 90-day survival, need for renal replacement therapy and predictors of HRS reversal. Patients received intravenous terlipressin 1–2 mg every 6 hours plus albumin or placebo plus albumin up to 14 days. Results
The pooled analysis comprised 308 patients (terlipressin: n = 153; placebo: n = 155). HRS reversal was significantly more frequent with terlipressin vs. placebo (27% vs. 14%; P = 0.004). Terlipressin was associated with a more significant improvement in renal function from baseline until end of treatment, with a mean between-group difference in SCr concentration of −53.0 μmol/L (P \u3c 0.0001). Lower SCr, lower mean arterial pressure and lower total bilirubin and absence of known precipitating factors for HRS were independent predictors of HRS reversal and longer survival in terlipressin-treated patients. Conclusions
Terlipressin plus albumin resulted in a significantly higher rate of HRS reversal vs. albumin alone in patients with HRS-1. Terlipressin treatment is associated with improved renal function
- …