6,229 research outputs found
Cavity cooling a single charged nanoparticle
The development of laser cooling coupled with the ability to trap atoms and
ions in electromagnetic fields, has revolutionised atomic and optical physics,
leading to the development of atomic clocks, high-resolution spectroscopy and
applications in quantum simulation and processing. However, complex systems,
such as large molecules and nanoparticles, lack the simple internal resonances
required for laser cooling. Here we report on a hybrid scheme that uses the
external resonance of an optical cavity, combined with radio frequency (RF)
fields, to trap and cool a single charged nanoparticle. An RF Paul trap allows
confinement in vacuum, avoiding instabilities that arise from optical fields
alone, and crucially actively participates in the cooling process. This system
offers great promise for cooling and trapping a wide range of complex charged
particles with applications in precision force sensing, mass spectrometry,
exploration of quantum mechanics at large mass scales and the possibility of
creating large quantum superpositions.Comment: 8 pages, 5 figures Updated version includes additional references,
new title, and supplementary information include
Split-sideband spectroscopy in slowly modulated optomechanics
Optomechanical coupling between the motion of a mechanical oscillator and a
cavity represents a new arena for experimental investigation of quantum effects
on the mesoscopic and macroscopic scale.The motional sidebands of the output of
a cavity offer ultra-sensitive probes of the dynamics. We introduce a scheme
whereby these sidebands split asymmetrically and show how they may be used as
experimental diagnostics and signatures of quantum noise limited dynamics. We
show split-sidebands with controllable asymmetry occur by simultaneously
modulating the light-mechanical coupling and - slowly and out
of-phase. Such modulations are generic but already occur in optically trapped
set-ups where the equilibrium point of the oscillator is varied cyclically. We
analyse recently observed, but overlooked, experimental split-sideband
asymmetries; although not yet in the quantum regime, the data suggests that
split sideband structures are easily accessible to future experiments
Chaotic quantum ratchets and filters with cold atoms in optical lattices: properties of Floquet states
Recently, cesium atoms in optical lattices subjected to cycles of
unequally-spaced pulses have been found to show interesting behavior: they
represent the first experimental demonstration of a Hamiltonian ratchet
mechanism, and they show strong variability of the Dynamical Localization
lengths as a function of initial momentum. The behavior differs qualitatively
from corresponding atomic systems pulsed with equal periods, which are a
textbook implementation of a well-studied quantum chaos paradigm, the quantum
delta-kicked particle (delta-QKP). We investigate here the properties of the
corresponding eigenstates (Floquet states) in the parameter regime of the new
experiments and compare them with those of the eigenstates of the delta-QKP at
similar kicking strengths. We show that, with the properties of the Floquet
states, we can shed light on the form of the observed ratchet current as well
as variations in the Dynamical Localization length.Comment: 9 pages, 9 figure
Aerosol-assisted metallo-organic chemical vapour deposition of Bi2Se3 films using single-molecule precursors: the crystal structure of bismuth(m) dibutyldiselenocarbamate
The complexes [Bi{Se2CN(C2H5)2}3], [Bi{Se2CN(C4H9)2}3], [Bi{Se2CN(CH3)(C4H9)}3] and
[Bi{Se2CN(CH3)(C6H13)}3] have been synthesized and characterized structurally using IR, 1H and 13C NMR. In
addition, the crystal structure of [Bi{Se2CN(C4H9)2}3] was determined by single-crystal X-ray diffraction,
showing the bismuth centre coordinated to three dialkyldiselenocarbamate ligands through the selenium donor
atoms. The Bi(III) compounds were used as precursors for the deposition of Bi2Se3 films on glass substrates
through aerosol-assisted metallo-organic chemical vapour deposition (AA-MOCVD)
- …