1,012 research outputs found

    Impatient Customers in an Markovian Queue with Bernoulli Schedule Working Vacation Interruption and Setup Time

    Get PDF
    In this paper, using probability generating function method, Impatient customers in an Markovian queue with Bernoulli schedule working vacation interruption and setup time is discussed. Customers impatience is due to the servers vacation. During the working vacation period, if there are customers in the queue, the vacation can be interrupted at a service completion instant and the server begins a regular service period with probability (1 - b) or continues the vacation with probability b. We obtain the probability generating functions of the stationary state probabilities, performance measures, sojourn time of a customer and stochastic decomposition of the queue length, waiting time and numerical results

    Spontaneous Interlayer Charge Transfer near the Magnetic Quantum Limit

    Full text link
    Experiments reveal that a confined electron system with two equally-populated layers at zero magnetic field can spontaneously break this symmetry through an interlayer charge transfer near the magnetic quantum limit. New fractional quantum Hall states at unusual total filling factors such as \nu = 11/15 (= 1/3 + 2/5) stabilize as signatures that the system deforms itself, at substantial electrostatic energy cost, in order to gain crucial correlation energy by "locking in" separate incompressible liquid phases at unequal fillings in the two layers (e.g., layered 1/3 and 2/5 states in the case of \nu = 11/15).Comment: 4 pages, 4 figures (1 color) included in text. Related papers at http://www.ee.princeton.edu/~hari/papers.htm

    Metallocarbohedrenes: a new class of molecular clusters with cage structure

    Get PDF
    The chemistry of a new class of molecular clusters having closed cage structure, called metallocarbohedrenes or metcars, is described. These molecules of general formula M8C12, where M is a metal, were discovered in mass spectrometry experiments. By reacting laser-evaporated metal with hydrocarbons and cooling the reacton mixture in an inert atmosphere of helium, a number of metcar ions containing Ti, V, Hf, Zr, Mo, Cr and F e have been produced by different workers. The chemistry of these ions is gradually unfolding with several groups putting efforts in experimental and theoretical studies

    Duality and Anholonomy in Quantum Mechanics of 1D Contact Interactions

    Full text link
    We study systems with parity invariant contact interactions in one dimension. The model analyzed is the simplest nontrivial one --- a quantum wire with a point defect --- and yet is shown to exhibit exotic phenomena, such as strong vs weak coupling duality and spiral anholonomy in the spectral flow. The structure underlying these phenomena is SU(2), which arises as accidental symmetry for a particular class of interactions.Comment: 4 pages ReVTeX with 4 epsf figures. KEK preprint 2000-3. Correction in Eq.(14

    A theoretical study of the Jorgensen’s nephelauxetic effect in some simple transition metal halo-complexes from a molecular orbital computation

    Get PDF
    A theoretical study of Jorgensen's nephelauxetic effect in some simple high spin transition metal halo-complexes has been made with an unrestricted Hartree-Fock-SCF-INDO MO calculation. The nephelauxetic spectroscopic parameters—the Racah integralB and the covalency factor β- have been theoretically evaluated from the above MO analysis results. For this a pseudo-atom model and an eigen-MO model have been employed. The results allow a comparison to be made between the experimental and theoretical results, which indicate the relative success of the pseudo-atom model over the other. It has also been pointed out that the results from both models would have improved considerably if the use of metal valence basis orbitals corresponding to its final oxidation state had been resorted to. The concept of differential covalency and its effect on nephelauxetic parameters are also discussed

    Adsorbed 3d transition metal atoms and clusters on Au(111):Signatures derived from one electron calculations

    Full text link
    The spectroscopic characteristics of systems with adsorbed d impurities on noble metal surfaces should depend on the number and geometric arrangement of the adsorbed atoms and also on their d band filling. Recent experiments using scanning tunneling microscopy have probed the electronic structure of all 3d transition metal impurities and also of Co dimers adsorbed on Au(111), providing a rich variety of results. In this contribution we correlate those experimental results with ab-initio calculations and try to establish necessary conditions for observing a Kondo resonance when using the single impurity Anderson model. We find that the relevant orbitals at the STM tip position, when it is on top of an impurity, are the dThe spectroscopic characteristics of systems with adsorbed d impurities on noble metal surfaces should depend on the number and geometric arrangement of the adsorbed atoms and also on their d band filling. Recent experiments using scanning tunneling microscopy have probed the electronic structure of all 3d transition metal impurities and also of Co dimers adsorbed on Au(111), providing a rich variety of results. In this contribution we correlate those experimental results with ab-initio calculations and try to establish necessary conditions for observing a Kondo resonance when using the single impurity Anderson model. We find that the relevant orbitals at the STM tip position, when it is on top of an impurity, are the d orbitals with m=0 and that the energy of these levels with respect to the Fermi energy determines the possibility of observing a spectroscopic feature due to the impurity. orbitals with m=0 and that the energy of these levels with respect to the Fermi energy determines the possibility of observing a spectroscopic feature due to the impurity

    Electron Spin Resonance Study of Mn(CN)_5NO^(2-) in a Single Crystal

    Get PDF
    McNEIL, RAYNOR and SYMONS recently reported the e.s.r. spectra of Mn(CN)_5NO^(2-) in liquid solutions at room temperature and in frozen glasses at 77ºK. In their experiments they did not detect any hyperfine splittings due to ^(14)N of the NO group and estimated that both A_⊥(^(14)N) and A_(II)(^(14)N) are smaller than 1.9 gauss

    Scattering Theory of Kondo Mirages and Observation of Single Kondo Atom Phase Shift

    Full text link
    We explain the origin of the Kondo mirage seen in recent quantum corral Scanning Tunneling Microscope (STM) experiments with a scattering theory of electrons on the surfaces of metals. Our theory combined with experimental data provides the first direct observation of a single Kondo atom phase shift. The Kondo mirage at the empty focus of an elliptical quantum corral is shown to arise from multiple electron bounces off the walls of the corral in a manner analagous to the formation of a real image in optics. We demonstrate our theory with direct quantitive comparision to experimental data.Comment: 13 pages; significant clarifications of metho
    • …
    corecore