903 research outputs found
Hortonian Scaling of Coupled Hydrological and Biogeochemical Responses Across an Intensively Managed River Basin
Structural and functional attributes across fractal river networks have been characterized by well-established and consistent hierarchical, Hortonian scaling patterns. In most of the global river basins, spatial patterns of human settlements also conform to similar hierarchical scaling. However, emergent spatial hierarchical patterns and scaling of heterogeneous anthropogenic nutrient loads over a river basin are less known. As a case study, we examined here a large intensely managed river basin in Germany (Weser River; 46K km(2); 8M population). Archived data for point-/diffuse-sources of total Phosphorus (P-tot) input loads were combined with numerical and analytical model simulations of coupled hydrological and biogeochemical processes for in-stream P-tot removal at the network scale. We find that P-tot input loads scale exponentially over stream-orders, with the larger scaling constant for point-source loads from urban agglomerations compared to those for diffuse-source contributions from agricultural and forested areas. These differences in scaling patterns result from hierarchical self-organization of human settlements, and the associated clustering of large-scale, altered land-cover. Fraction of P-tot loads removed through in-stream biogeochemical processes also manifests Hortonian scaling, consistent with predictions of an analytical model. Our analyses show that while smaller streams are more efficient in P-tot removal, in larger streams the magnitude of P-tot loads removed is higher. These trends are consistent with inverse scaling of nutrient removal rate constant with mean discharge, and downstream clustering of larger cumulative input loads. Analyses of six nested sub-basins within the Weser River Basin also reveal similar scaling patterns. Our findings are useful for projecting likely water-quality spatial patterns in similar river basins in Germany, and Central Europe. Extensions and generalizations require further examination of diverse basins with archetype spatial heterogeneities in anthropogenic pressures and hydroclimatic settings
Remediation of Contaminated Soils by Solvent Flushing
Solvent flushing is a potential technique for remediating a waste disposal/spill site contaminated with organic chemicals. This technique involves the injection of a solvent mixture (e.g., water plus alcohols) that enhances contaminant solubility, reduces the retardation factor, and increases the release rates of the contaminants. A simulation model is developed to predict contaminant elution curves during solvent flushing for the case of one‐dimensional, steady flow through a contaminated medium. Column experiments are conducted with a Eustis fine sand that is initially equilibrated with an aqueous naphthalene solution, and then eluted with different methanol‐water mixtures to remove the naphthalene. The model simulations, based on parameter values estimated from literature data, agree well with the measured elution profiles. Solvent flushing experiments, where the soil was initially equilibrated with a solution of naphthalene and anthracene, show that compounds with different retardation factors are separated at low cosolvent contents, while coelution of the compounds occurs at higher contents. In general, the smaller the retardation factor in water and the higher the cosolvent fraction, the faster the contaminant is recovered. The presence of nonequilibrium conditions, soil heterogeneity, and type of cosolvent will influence the time required to recover the contaminant.\u
FABRICATION OF SODIUM ALGINATE/GUM GHATTI IPN MICROBEADS INTERCALATED WITH KAOLIN NANO CLAY FOR CONTROLLED RELEASE OF CURCUMIN
Objective: The objective of this study is to fabricate sodium alginate (SA)/gum ghatti (GG) microbeads intercalated with Kaolin (KA) nano clay for the sustained release of curcumin (CUR).
Methods: The microbeads were prepared by a simple ionotropic gelation technique. The developed beads were characterized by fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (X-RD), and scanning electron microscopy (SEM). Swelling studies and in vitro release studies were investigated under both pH 7.4 and pH 1.2 at 37 °C.
Results: The developed microbeads were characterized by FTIR, which confirms the interaction between CUR, polymeric matrix and KA. DSC and XRD analysis reveals that the CUR has molecularly dispersed in the polymer matrix. In vitro results illustrated that microbeads were influenced by the pH of test media, which might be suitable for intestinal drug delivery. The drug release mechanism was analyzed by fitting the release data into different kinetic equations and n values are obtained in the range of 0.609-0.640, suggesting that the developed microbeads showed the non-Fickian diffusion type drug release.
Conclusion: These results clearly illustrated that the developed KA intercalated polymeric microbeads are potential drug carriers for the controlled release of CUR
Structural and optical properties of TeO2- SeO2-Na2O glass system
50-6280 TeO2-(20-x) SeO2-xNa2O (where x = 0, 5, 10, 15, 20 mol %) ternary glass system have been successfully prepared by conventional melt-quenching method. The non-crystalline nature of the tested glass samples has been confirmed by X-ray diffraction. The structural transformation in the tested glass samples has been evaluated by measuring density (ρ), molar volume (VM), oxygen packing density (OPD) and oxygen molar volume (V0) values. The characteristic temperature of the glass system (glass transition,Tg, crystallization, Tc ) decreases with increasing Na2O content. Raman spectra show that addition of Na2O to TeO2 + SeO2 glass may result in cleavage of Te-O-Te and Se-O-Se linkages and formation of TeO3- and SeO3- terminal groups in the glass system. FTIR spectra show that the units of TeO4 units decrease and the units of TeO3 / TeO3+1 increase in the tested glass samples. The cut-off wavelength (λC), optical band gap (Eopt), refractive index (n), molar refraction (RM), metallization criterion (M), molar polarizability (αm), electronic polarizability of oxide ion (αo2-), optical basicity (Λ), Fermi energy (EF), dispersion energy (Ed), single oscillator energy (E0) and Urbach energy (ΔE) have been calculated from optical absorption spectra. The reflectivity of light and extinction coefficient (k) is used to find imaginary part of dielectric constant (εi). The optical band gap energy and allowed transitions have been investigated using five methods; indirect, direct, indirect forbidden, direct forbidden and imaginary part of the dielectric constant. The optical band gap values of direct transition are in well agreement with the optical band values of an imaginary part of dielectric constant. The obtained optical band gap values decrease with increasing sodium oxide in the glass samples. Increase in Urbach energy values in the present glass system is due to an increase in the number of defects in the glass structure. The tested glass samples possess higher values of Urbach energy, molar electronic polarizability, and optical basicity. The excitation energy E0 decreases with the increase of Na2O content in the glass system
Medea: scheduling of long running applications in shared production clusters
The rise in popularity of machine learning, streaming, and latency-sensitive online applications in shared production clusters has raised new challenges for cluster schedulers. To optimize their performance and resilience, these applications require precise control of their placements, by means of complex constraints, e.g., to collocate or separate their long-running containers across groups of nodes. In the presence of these applications, the cluster scheduler must attain global optimization objectives, such as maximizing the number of deployed applications or minimizing the violated constraints and the resource fragmentation, but without affecting the scheduling latency of short-running containers. We present Medea, a new cluster scheduler designed for the placement of long- and short-running containers. Medea introduces powerful placement constraints with formal semantics to capture interactions among containers within and across applications. It follows a novel two-scheduler design: (i) for long-running containers, it applies an optimization-based approach that accounts for constraints and global objectives; (ii) for short-running containers, it uses a traditional task-based scheduler for low placement latency. Evaluated on a 400-node cluster, our implementation of Medea on Apache Hadoop YARN achieves placement of long-running applications with significant performance and resilience benefits compared to state-of-the-art schedulers
प्लवमान पिंजरों में समुद्र कृषि और पानी की गुणता – भारत के विशाखपट्टणम में इसका प्रभाव निर्धारण अध्ययन
कृपया पूरा लेखा पढ
Study of TORCH infections and its impact on newborn babies and infants: a retrospective study in a tertiary care hospital in Visakhapatnam, Andhra Pradesh, India
Background: TORCH is an acronym for Toxoplasma, others (syphilis), Rubella, Cytomegalovirus and Herpes simplex virus. These are important causes of morbidity and mortality in new-borns, infants and children. Early diagnosis and treatment are essential to reduce the morbidity and mortality.Methods: It was a cross sectional record based retrospective record-based study conducted in King George Hospital, Andhra Medical College, Visakhapatnam, Andhra Pradesh. Samples from clinically suspected cases (newborns and infants) for possible TORCH infections were tested in virology laboratory from January to November 2019 and the samples were collected and tested by EUROIMMUN kit for the respective IgM antibodies and analyzed. Clinical details of newborns and infants were gathered from the patients through telephonic communication.Results: Total number of patients tested were 104 in which 54 (52%) showed positivity in which 36 were positive for CMV, 25 for HSV2, 23 for Rubella, 12 for Toxoplasma and 11 for Varicella zoster infection. Out of 52 positive cases 20.4% were alive and normal, 20% were alive but severely affected, mortality was 16.7%. Out of 16.7% mortalities 22% of deaths were due to nephrotic syndrome. Clinical manifestations include hepato-splenomegaly in 33.3% cases, fever in 30%, low birth weight in 25%, heart disease in 13.7%, microcephaly in 13.7%.Conclusions: Our study showed hepatomegaly, fever and low birth weight as common clinical manifestations. Fever and nephrotic syndrome were typically associated with CMV positive cases. Out of 52 % positively tested cases CMV was very common infection followed by HSV2, Rubella and Toxoplasmosis
- …