1,276 research outputs found
Neural tube defects: recent advances, unsolved questions, and controversies
Neural tube defects are severe congenital malformations affecting around one in every 1000 pregnancies. An innovation in clinical management has come from the finding that closure of open spina bifida lesions in utero can diminish neurological dysfunction in children. Primary prevention with folic acid has been enhanced through introduction of mandatory food fortification in some countries, although not yet in the UK. Genetic predisposition accounts for most of the risk of neural tube defects, and genes that regulate folate one-carbon metabolism and planar cell polarity have been strongly implicated. The sequence of human neural tube closure events remains controversial, but studies of mouse models of neural tube defects show that anencephaly, open spina bifida, and craniorachischisis result from failure of primary neurulation, whereas skin-covered spinal dysraphism results from defective secondary neurulation. Other malformations, such as encephalocele, are likely to be postneurulation disorders
Two-fluid and magnetohydrodynamic modelling of magnetic reconnection in the MAST spherical tokamak and the solar corona
Twisted magnetic flux ropes are ubiquitous in space and laboratory plasmas,
and the merging of such flux ropes through magnetic reconnection is an
important mechanism for restructuring magnetic fields and releasing free
magnetic energy. The merging-compression scenario is one possible start up
scheme for spherical tokamaks, which has been used on the Mega Amp Spherical
Tokamak MAST. Two current-carrying plasma rings, or flux ropes, approach each
other through the mutual attraction of their like currents, and merge, through
magnetic reconnection, into a single plasma torus, with substantial plasma
heating. 2D resistive MHD and Hall MHD simulations of this process are
reported, and new results for the temperature distribution of ions and
electrons are presented. A model of the based on relaxation theory is also
described, which is now extended to tight aspect ratio geometry. This model
allows prediction of the final merged state and the heating. The implications
of the relaxation model for heating of the solar corona are also discussed, and
a model of the merger of two or more twisted coronal flux ropes is presented,
allowing for different senses of twist
Rheology of Active-Particle Suspensions
We study the interplay of activity, order and flow through a set of
coarse-grained equations governing the hydrodynamic velocity, concentration and
stress fields in a suspension of active, energy-dissipating particles. We make
several predictions for the rheology of such systems, which can be tested on
bacterial suspensions, cell extracts with motors and filaments, or artificial
machines in a fluid. The phenomena of cytoplasmic streaming, elastotaxis and
active mechanosensing find natural explanations within our model.Comment: 3 eps figures, submitted to Phys Rev Let
Enrichment of clinically relevant organisms in spontaneous preterm delivered placenta and reagent contamination across all clinical groups in a large UK pregnancy cohort.
In this study differences in the placental microbiota of term and preterm deliveries from a large UK pregnancy cohort were studied using 16S targeted amplicon sequencing. The impact of contamination from DNA extraction, PCR reagents, as well as those from delivery itself were also examined. A total of 400 placental samples from 256 singleton pregnancies were analysed and differences investigated between spontaneous preterm, non-spontaneous preterm, and term delivered placenta. DNA from recently delivered placenta was extracted, and screening for bacterial DNA was carried out using targeted sequencing of the 16S rRNA gene on the Illumina MiSeq platform. Sequenced reads were analysed for presence of contaminating operational taxonomic units (OTUs) identified via sequencing of negative extraction and PCR blank samples. Differential abundance and between sample (beta) diversity metrics were then compared. A large proportion of the reads sequenced from the extracted placental samples mapped to OTUs that were also found in negative extractions. Striking differences in the composition of samples were also observed, according to whether the placenta was delivered abdominally or vaginally, providing strong circumstantial evidence for delivery contamination as an important contributor to observed microbial profiles. When OTU and genus level abundances were compared between the groups of interest, a number of organisms were enriched in the spontaneous preterm cohort, including organisms that have been previously associated with adverse pregnancy outcomes, specifically Mycoplasma spp., and Ureaplasma spp.. However, analyses of overall community structure did not reveal convincing evidence for the existence of a reproducible 'preterm placental microbiome'.
IMPORTANCE:
Preterm birth is associated with both psychological and physical disabilities and is the leading cause of infant morbidity and mortality worldwide. Infection is known to be an important cause of spontaneous preterm birth, and recent research has implicated variation in the 'placental microbiome' with preterm birth risk. Consistent with previous studies, the abundance of certain clinically relevant species differed between spontaneous preterm and non-spontaneous preterm or term delivered placenta. These results support the view that a proportion of spontaneous preterm births have an intra-uterine infection component. However, an additional observation from this study was that a substantial proportion of reads sequenced were contaminating reads, rather than DNA from endogenous, clinically relevant species. This observation warrants caution in the interpretation of sequencing output from such low biomass samples as the placenta
FLUORESCENCE AND CIRCULAR DICHROISM STUDIES ON THE PHYCOERYTHROCYANINS FROM THE CYANOBACTERIUM
Two phycoerythrocyanin (PEC) fractions have been obtained from the phycobilisomes of the cyanobac-terium Westiellopsis prolifica ARM 365. They have been characterized by absorption, fluorescence and circular dichroism spectroscopy. One of them is spectroscopically similar to a PEC trimer known from other organisms. Whereas efficient energy transfer from its violin (α-84) to the cyanin (β-84, 155) chromophores is efficient in the trimer (αβ it is impeded after dissociation to the monomer (α,β). A second fraction of PEC which we earlier termed PEC(X) (Maruthi Sai et al., Photochem. Photobiol. 55,119–124, 1992), exhibited the spectral properties similar to that of the α-subunit of PEC from Mastigocladus laminosus. With this highly photoactive fraction, the circular dichroism spectra of the violobilin chromophore in both photoreversible states were obtained
Solar Particle Acceleration at Reconnecting 3D Null Points
Context: The strong electric fields associated with magnetic reconnection in
solar flares are a plausible mechanism to accelerate populations of high
energy, non-thermal particles. One such reconnection scenario occurs at a 3D
magnetic null point, where global plasma flows give rise to strong currents in
the spine axis or fan plane. Aims: To understand the mechanism of charged
particle energy gain in both the external drift region and the diffusion region
associated with 3D magnetic reconnection. In doing so we evaluate the
efficiency of resistive spine and fan models for particle acceleration, and
find possible observables for each. Method: We use a full orbit test particle
approach to study proton trajectories within electromagnetic fields that are
exact solutions to the steady and incompressible magnetohydrodynamic equations.
We study single particle trajectories and find energy spectra from many
particle simulations. The scaling properties of the accelerated particles with
respect to field and plasma parameters is investigated. Results: For fan
reconnection, strong non-uniform electric drift streamlines can accelerate the
bulk of the test particles. The highest energy gain is for particles that enter
the current sheet, where an increasing "guide field" stabilises particles
against ejection. The energy is only limited by the total electric potential
energy difference across the fan current sheet. The spine model has both slow
external electric drift speed and weak energy gain for particles reaching the
current sheet. Conclusions: The electromagnetic fields of fan reconnection can
accelerate protons to the high energies observed in solar flares, gaining up to
0.1 GeV for anomalous values of resistivity. However, the spine model, which
gave a harder energy spectrum in the ideal case, is not an efficient
accelerator after pressure constraints in the resistive model are included.Comment: 15 pages, 14 figures. Submitted to Astronomy and Astrophysic
The state of peer-to-peer network simulators
Networking research often relies on simulation in order to test and evaluate new ideas. An important requirement of this process is that results must be reproducible so that other researchers can replicate, validate and extend existing work. We look at the landscape of simulators for research in peer-to-peer (P2P) networks by conducting a survey of a combined total of over 280 papers from before and after 2007 (the year of the last survey in this area), and comment on the large quantity of research using bespoke, closed-source simulators. We propose a set of criteria that P2P simulators should meet, and poll the P2P research community for their agreement. We aim to drive the community towards performing their experiments on simulators that allow for others to validate their results
Genetics of human neural tube defects
Neural tube defects (NTDs) are common, severe congenital malformations whose causation involves multiple genes and environmental factors. Although more than 200 genes are known to cause NTDs in mice, there has been rather limited progress in delineating the molecular basis underlying most human NTDs. Numerous genetic studies have been carried out to investigate candidate genes in cohorts of patients, with particular reference to those that participate in folate one-carbon metabolism. Although the homocysteine remethylation gene MTHFR has emerged as a risk factor in some human populations, few other consistent findings have resulted from this approach. Similarly, attention focused on the human homologues of mouse NTD genes has contributed only limited positive findings to date, although an emerging association between genes of the non-canonical Wnt (planar cell polarity) pathway and NTDs provides candidates for future studies. Priorities for the next phase of this research include: (i) larger studies that are sufficiently powered to detect significant associations with relatively minor risk factors; (ii) analysis of multiple candidate genes in groups of well-genotyped individuals to detect possible gene–gene interactions; (iii) use of high throughput genomic technology to evaluate the role of copy number variants and to detect ‘private’ and regulatory mutations, neither of which have been studied to date; (iv) detailed analysis of patient samples stratified by phenotype to enable, for example, hypothesis-driven testing of candidates genes in groups of NTDs with specific defects of folate metabolism, or in groups of fetuses with well-defined phenotypes such as craniorachischisis
Genetic Analyses in Small for Gestational Age Newborns
Context: Small for gestational age (SGA) can be a result of fetal growth restriction, associated with perinatal morbidity and mortality. Mechanisms that control prenatal growth are poorly understood.
Objective: The aim of the present study was to gain more insight into prenatal growth failure and determine an effective diagnostic approach in SGA newborns. We hypothesized that one or more CNVs and disturbed methylation and sequence variants may be present in genes known to be associated with fetal growth.
Design: A prospective cohort study of subjects with a low birthweight for gestational age.
Setting: The study was conducted at an academic pediatric research institute.
Patients:
A total of 21 SGA newborns with a mean birthweight below the 1st centile and a control cohort of 24 appropriate for gestational age newborns were studied.
Intervention:
Array comparative genomic hybridization, genome-wide methylation studies and exome sequencing were performed.
Main Outcome Measures
The numbers of copy number variations, methylation disturbances and sequence variants.
Results:
The genetic analyses demonstrated three CNVs, one systematically disturbed methylation pattern and one sequence variant explaining the SGA. Additional methylation disturbances and sequence variants were present 20 patients. In 19 patients, multiple abnormalities were found.
Conclusion: Our results confirm the influence of a large number of mechanisms explaining dysregulation of fetal growth. We conclude that copy number variations, methylation disturbances and sequence variants all contribute to prenatal growth failure. Such genetic workup can be an effective diagnostic approach in SGA newborns
- …
