14 research outputs found

    Femtoscopy of the system shape fluctuations in heavy ion collisions

    Full text link
    Dipole, triangular, and higher harmonic flow that have an origin in the initial density fluctuations has gained a lot of attention as they can provide additional important information about the dynamical properties (e.g. viscosity) of the system. The fluctuations in the initial geometry should be also reflected in the detail shape and velocity field of the system at freeze-out. In this talk I discuss the possibility to measure such fluctuations by means of identical and non-identical particle interferometry.Comment: 4 pages, Proceedings of Quark Matter 2011 Conference, May 23 - May 28, Annecy, Franc

    Study on initial geometry fluctuations via participant plane correlations in heavy ion collisions: part II

    Get PDF
    Further investigation of the participant plane correlations within a Glauber model framework is presented, focusing on correlations between three or four participant planes of different order. A strong correlation is observed for cos(2Φ2+3Φ35Φ5)\cos(2\Phi_{2}^*+3\Phi_{3}^*-5\Phi_{5}^*) which is a reflection of the elliptic shape of the overlap region. The correlation between the corresponding experimental reaction plane angles can be easily measured. Strong correlations of similar geometric origin are also observed for cos(2Φ2+4Φ46Φ6)\cos(2\Phi_{2}^*+4\Phi_{4}^*-6\Phi_{6}^*), cos(2Φ23Φ34Φ4+5Φ5)\cos(2\Phi_2^*-3\Phi_3^*-4\Phi_4^*+5\Phi_5^*), cos(6Φ2+3Φ34Φ45Φ5)\cos(6\Phi_2^*+3\Phi_3^*-4\Phi_4^*-5\Phi_5^*), cos(Φ12Φ23Φ3+4Φ4)\cos(\Phi_1^*-2\Phi_2^*-3\Phi_3^*+4\Phi_4^*), cos(Φ1+6Φ23Φ34Φ4)\cos(\Phi_1^*+6\Phi_2^*-3\Phi_3^*-4\Phi_4^*), and cos(Φ1+2Φ2+3Φ36Φ6)\cos(\Phi_1^*+2\Phi_2^*+3\Phi_3^*-6\Phi_6^*), which are also measurable. Experimental measurements of the corresponding reaction plane correlators in heavy ion collisions at RHIC and the LHC may improve our understanding of the physics underlying the measured higher order flow harmonics.Comment: 5 pages, 5 figure

    Influence of tubular initial conditions on two-particle correlations

    Full text link
    A unified description of the near-side and away-side structures observed in two-particle correlations as function of delta eta-delta phi is proposed for low to moderate transverse momentum. It is based on the combined effect of tubular initial conditions and hydrodynamical expansion.Comment: 4 pages, 3 figures. Contribution to QM201

    Higher Flow Harmonics in Heavy Ion Collisions from STAR

    Full text link
    We report STAR measurements relating to higher flow harmonics including the centrality dependence of two- and four-particle cumulants for harmonics 1 to 6. Two-particle correlation functions vs. \Delta\eta and \Delta\phi are presented for pT and number correlations. We find the power spectra (Fourier Transforms of the correlation functions) for central collisions drop quickly for higher harmonics. The \Delta\eta dependence of v3{2}2 and the pT and centrality dependence of v2 and v3 are studied. Trends are conistent with expectations from models including hot-spots in the initial energy density and an expansion phase. We also present v3 and v2{2}2 - v2{4}2 vs. \surdsNN .Comment: 8 pages. Conference proceedings for Quark Matter 201

    Toward the AdS/CFT dual of the "Little Bang"

    Full text link
    This (rather subjective) review sums up few years of work devoted to explain various aspects of high energy heavy ion collisions using the AdS/CFT correspondence. The central issue of is is formation of the trapped surface (black hole) phenomenon, seen by a distant observer as the entropy production. We end up discussing an issue of classical gravitational radiation by an ultrarelativistic falling body and the so called breaking self-force related to it.Comment: a review to appear in topical volume of reviews collected by editors, S.Bass and G.Casaladerrey-Solan

    Fluctuations around Bjorken Flow and the onset of turbulent phenomena

    Full text link
    We study how fluctuations in fluid dynamic fields can be dissipated or amplified within the characteristic spatio-temporal structure of a heavy ion collision. The initial conditions for a fluid dynamic evolution of heavy ion collisions may contain significant fluctuations in all fluid dynamical fields, including the velocity field and its vorticity components. We formulate and analyze the theory of local fluctuations around average fluid fields described by Bjorken's model. For conditions of laminar flow, when a linearized treatment of the dynamic evolution applies, we discuss explicitly how fluctuations of large wave number get dissipated while modes of sufficiently long wave-length pass almost unattenuated or can even be amplified. In the opposite case of large Reynold's numbers (which is inverse to viscosity), we establish that (after suitable coordinate transformations) the dynamics is governed by an evolution equation of non-relativistic Navier-Stokes type that becomes essentially two-dimensional at late times. One can then use the theory of Kolmogorov and Kraichnan for an explicit characterization of turbulent phenomena in terms of the wave-mode dependence of correlations of fluid dynamic fields. We note in particular that fluid dynamic correlations introduce characteristic power-law dependences in two-particle correlation functions.Comment: 40 pages, 5 figures, published versio

    A method for studying initial geometry fluctuations via event plane correlations in heavy ion collisions

    No full text
    A method is proposed to measure the relative azimuthal angle distributions involving two or more event planes of different order in heavy ion collisions using a Fourier analysis technique. The analysis procedure is demonstrated for correlations involving two and three event planes (Phi_n, Phi_m and Phi_h). The Fourier coefficients of these distributions are found to coincide with previously proposed correlators, such as cos(6Phi_2-6Phi_3) and cos(Phi_1+2Phi_2-3Phi_3) etc, hence the method provides a natural framework for studying these correlators at the same time. Using a Monte Carlo Glauber model to simulate Au+Au collisions with fluctuating initial geometry, we are able to identify several new two- or three-plane correlators that have sizable magnitudes and should be measured experimentally.Comment: 10 pages, 14 figure
    corecore