56 research outputs found
Dispersion of the dielectric function of a charge-transfer insulator
We study the problem of dielectric response in the strong coupling regime of
a charge transfer insulator. The frequency and wave number dependence of the
dielectric function and its inverse is the main object of consideration. We show that the
problem, in general, cannot be reduced to a calculation within the Hubbard
model, which takes into account only a restricted number of electronic states
near the Fermi energy. The contribution of the rest of the system to the
longitudinal response (i.e. to ) is essential
for the whole frequency range. With the use of the spectral representation of
the two-particle Green's function we show that the problem may be divided into
two parts: into the contributions of the weakly correlated and the Hubbard
subsystems. For the latter we propose an approach that starts from the
correlated paramagnetic ground state with strong antiferromagnetic
fluctuations. We obtain a set of coupled equations of motion for the
two-particle Green's function that may be solved by means of the projection
technique. The solution is expressed by a two particle basis that includes the
excitonic states with electron and hole separated at various distances. We
apply our method to the multiband Hubbard (Emery) model that describes layered
cuprates. We show that strongly dispersive branches exist in the excitonic
spectrum of the 'minimal' Emery model () and consider the
dependence of the spectrum on finite oxygen hopping and on-site
repulsion . The relationship of our calculations to electron energy loss
spectroscopy is discussed.Comment: 22 pages, 5 figure
Realistic description of electron-energy loss spectroscopy for One-Dimensional SrCuO
We investigate the electron-energy loss spectrum of one-dimensional undoped
CuO chains within an extended multi-band Hubbard model and an extended
one-band Hubbard model, using the standard Lanczos algorithm. Short-range
intersite Coulomb interactions are explicitly included in these models, and
long-range interactions are treated in random-phase approximation. The results
for the multi-band model with standard parameter values agree very well with
experimental spectra of SrCuO. In particular, the width of the main
structure is correctly reproduced for all values of momentum transfer. It is
shown for both models that intersite Coulomb interactions mainly lead to an
energy shift of the spectra. We find no evidence for enhanced intersite
interactions in SrCuO.Comment: 4 pages, 4 figure
One-dimensional dynamics of the d-electrons in -NaVO
We have studied the electronic properties of the ladder compound
-NaVO, adopting a joint experimental and theoretical
approach. The momentum-dependent loss function was measured using electron
energy-loss spectroscopy in transmission. The optical conductivity derived from
the loss function by a Kramers-Kronig analysis agrees well with our results
from LSDA+U band-structure calculations upon application of an
antiferromagnetic alignment of the V~3 spins along the legs and an
on-site Coulomb interaction U of between 2 and 3 eV. The decomposition of the
calculated optical conductivity into contributions from transitions between
selected energy regions of the DOS reveals the origin of the observed
anisotropy of the optical conductivity. In addition, we have investigated the
plasmon excitations related to transitions between the vanadium states within
an effective 16 site vanadium cluster model. Good agreement between the
theoretical and experimental loss function was obtained using the hopping
parameters derived from the tight binding fit to the band-structure and
moderate Coulomb interactions between the electrons within the ab plane.Comment: 23 pages, 8 figures; submitted to PR
- …