43 research outputs found

    In vitro bioactivity of titanium-doped bioglass

    Get PDF
    Previous studies have suggested that incorporating relatively small quantities of titanium dioxide into bioactive glasses may result in an increase in bioactivity and hydroxyapatite formation. The present work therefore investigated the in vitro bioactivity of a titanium doped bioglass and compared the results with 45S5 bioglass. Apatite formation was evaluated for bioglass and Ti-bioglass in the presence and absence of foetal calf serum. Scanning electron microscopy (SEM) images were used to evaluate the surface development and energy dispersive X-ray measurements provided information on the elemental ratios. X-ray diffraction spectra confirmed the presence of apatite formation. Cell viability was assessed for bone marrow stromal cells under direct and indirect contact conditions and cell adhesion was assessed using SEM

    Organic–Inorganic Surface Modifications for Titanium Implant Surfaces

    Full text link

    The use of advanced diffraction methods in the study of the structure of a bioactive calcia:silica sol-gel glass

    Full text link
    Sol-gel derived calcium silicate glasses may be useful for the regeneration of damaged bone. The mechanism of bioactivity is as yet only partially understood but has been strongly linked to calcium dissolution from the glass matrix. In addition to the usual laboratory-based characterisation methods, we have used neutron diffraction with isotopic substitution to gain new insights into the nature of the atomic-scale calcium environment in bioactive sol-gel glasses, and have also used high energy X-ray total diffraction to probe the nature of the processes initiated when bioactive glass is immersed in vitro in simulated body fluid. The data obtained point to a complex calcium environment in which calcium is loosely bound within the glass network and may therefore be regarded as facile. Complex multistage dissolution and mineral growth phases were observed as a function of reaction time between 1 min and 30 days, leading eventually, via octacalcium phosphate, to the formation of a disordered hydroxyapatite (HA) layer on the glass surface. This methodology provides insight into the structure of key sites in these materials and key stages involved in their reactions, and thereby more generally into the behaviour of bone-regenerative materials that may facilitate improvements in tissue engineering applications

    Characterisation of the inhomogeneity of sol-gel-derived SiO2-CaO bioactive glass and a strategy for its improvement

    Full text link
    Sol-gel derived bioactive glasses are one of the most promising materials for bone regeneration. The nanostructure of the glasses is critical regarding their interaction with the physiological environment. Composition is one of the most important factors affecting the nanostructure. In this study, inhomogeneity (a translucent component surrounded by an opaque component) was found within sol-gel derived bioactive glass monoliths (70 mol% SiO2 and 30 mol% CaO) produced by a standard procedure. The nanostructure and composition of the two components were characterised by electron microscopy, nitrogen sorption, secondary ion mass spectroscopy, X-ray fluorescence and solid state nuclear magnetic resonance. Results showed that calcium concentration and nanoscale porosity were much higher in the opaque region than in the translucent component. This is believed to be caused by calcium nitrate accumulation on the outer surface of the monoliths during the drying stage of the sol-gel process. The homogeneity of monoliths was successfully improved by using Teflon moulds. These findings are important for the large scale commercial production of homogeneous sol-gel glasses
    corecore