13,311 research outputs found

    Line-dependent veiling in very active T Tauri Stars

    Full text link
    The T Tauri stars with active accretion disks show veiled photospheric spectra. This is supposedly due to non-photospheric continuum radiated by hot spots beneath the accretion shocks at stellar surface and/or chromospheric emission lines radiated by the post-shocked gas. The amount of veiling is often considered as a measure of the mass-accretion rate. We analysed high-resolution photospheric spectra of accreting T Tauri stars LkHa 321, V1331 Cyg, and AS 353 A with the aim of clarifying the nature of the line-dependent veiling. Each of these objects shows a highly veiled, strong emission line spectrum and powerful wind features indicating high rates of accretion and mass loss. Equivalent widths of hundreds of weak photospheric lines were measured in the observed spectra and compared with those in synthetic spectra with the same spectral type. We found that the veiling is strongly line-dependent: larger in stronger photospheric lines and weak or absent in the weakest ones. No dependence of veiling on excitation potential within 0 to 5 eV was found. Different physical processes responsible for these unusual veiling effects are discussed in the framework of the magnetospheric accretion model. The observed veiling has two origins: 1) an abnormal structure of stellar atmosphere heated up by the accreting matter, and 2) a non-photospheric continuum radiated by a hot spot with temperature lower than 10000 K. The true level of the veiling continuum can be derived by measuring the weakest photospheric lines with equivalent widths down to \approx10 m\AA. A limited spectral resolution and/or low signal-to-noise ratio results in overestimation of the veiling continuum. In the three very active stars, the veiling continuum is a minor contributor to the observed veiling, while the major contribution comes from the line-dependent veiling.Comment: 10 pages, 10 figures. Accepted for publication in Astronomy and Astrophysic

    Equilibrium and dynamics of a trapped superfluid Fermi gas with unequal masses

    Full text link
    Interacting Fermi gases with equal populations but unequal masses are investigated at zero temperature using local density approximation and the hydrodynamic theory of superfluids in the presence of harmonic trapping. We derive the conditions of energetic stability of the superfluid configuration with respect to phase separation and the frequencies of the collective oscillations in terms of the mass ratio and the trapping frequencies of the two components. We discuss the behavior of the gas after the trapping potential of a single component is switched off and show that, near a Feshbach resonance, the released component can still remain trapped due to many-body interaction effects. Explicit predictions are presented for a mixture of 6^6Li and 40^{40}K with resonant interaction.Comment: 4 pages, 2 figure

    Nonlinearity of vacuum reggeons and exclusive diffractive production of vector mesons at HERA

    Full text link
    The processes of exclusive photo- and electroproduction of vector mesons ρ0\rho^0(770), ϕ\phi(1020) and J/ψJ/\psi(3096) at collision energies 30GeV<W<300GeV30 GeV<W<300 GeV and transferred momenta squared 0<t<2GeV20<-t<2 GeV^2 are considered in the framework of a phenomenological Regge-eikonal scheme with nonlinear Regge trajectories in which their QCD asymptotic behavior is taken into account explicitly. By comparison of available experimental data from ZEUS and H1 Collaborations with the model predictions it is demonstrated that corresponding angular distributions and integrated cross-sections in the above-mentioned kinematical range can be quantitatively described with use of two CC-even vacuum Regge trajectories. These are the "soft" pomeron dominating the high energy reactions without a hard scale and the "hard" pomeron giving an essential contribution to photo- and electroproduction of heavy vector mesons and deeply virtual electroproduction of light vector mesons.Comment: 25 pages, 12 figure

    Mathematical Models of Video-Sequences of Digital Half-Tone Images

    Get PDF
    This chapter is devoted to Mathematical Models (MM) of Digital Half-Tone Images (DHTI) and their video-sequences presented as causal multi-dimensional Markov Processes (MP) on discrete meshes. The difficulties of MM development for DHTI video-sequences of Markov type are shown. These difficulties are related to the enormous volume of computational operations required for their realization. The method of MM-DHTI construction and their statistically correlated video-sequences on the basis of the causal multi-dimensional multi-value MM is described in detail. Realization of such operations is not computationally intensive; Markov models from the second to fourth order demonstrate this. The proposed method is especially effective when DHTI is represented by low-bit (4-8 bits) binary numbers
    corecore