2,999 research outputs found
Non-Pauli Effects from Noncommutative Spacetimes
Noncommutative spacetimes lead to nonlocal quantum field theories (qft's)
where spin-statistics theorems cannot be proved. For this reason, and also
backed by detailed arguments, it has been suggested that they get corrected on
such spacetimes leading to small violations of the Pauli principle. In a recent
paper \cite{Pauli}, Pauli-forbidden transitions from spacetime noncommutativity
were calculated and confronted with experiments. Here we give details of the
computation missing from this paper. The latter was based on a spacetime
different from the Moyal plane. We argue that it
quantizes time in units of . Energy is then conserved only mod
. Issues related to superselection rules raised by non-Pauli
effects are also discussed in a preliminary manner.Comment: 15 Pages, 1 Table, Full details and further developments of
arXiv:1003.2250. This version is close to the one accepted by JHE
Near-Surface Te+ 125 Spins with Millisecond Coherence Lifetime
Impurity spins in crystal matrices are promising components in quantum technologies, particularly if they can maintain their spin properties when close to surfaces and material interfaces. Here, we investigate an attractive candidate for microwave-domain applications, the spins of group-VI Te+125 donors implanted into natural Si at depths as shallow as 20 nm. We show that surface band bending can be used to ionize such near-surface Te to spin-active Te+ state, and that optical illumination can be used further to control the Te donor charge state. We examine spin activation yield, spin linewidth, and relaxation (T1) and coherence times (T2) and show how a zero-field 3.5 GHz "clock transition"extends spin coherence times to over 1 ms, which is about an order of magnitude longer than other near-surface spin systems
Neuroinflammation in the normal-appearing white matter (NAWM) of the multiple sclerosis brain causes abnormalities at the nodes of Ranvier
Changes to the structure of nodes of Ranvier in the normal-appearing white matter (NAWM) of multiple sclerosis (MS) brains are associated with chronic inflammation. We show that the paranodal domains in MS NAWM are longer on average than control, with Kv1.2 channels dislocated into the paranode. These pathological features are reproduced in a model of chronic meningeal inflammation generated by the injection of lentiviral vectors for the lymphotoxin-α (LTα) and interferon-γ (IFNγ) genes. We show that tumour necrosis factor (TNF), IFNγ, and glutamate can provoke paranodal elongation in cerebellar slice cultures, which could be reversed by an N-methyl-D-aspartate (NMDA) receptor blocker. When these changes were inserted into a computational model to simulate axonal conduction, a rapid decrease in velocity was observed, reaching conduction failure in small diameter axons. We suggest that glial cells activated by pro-inflammatory cytokines can produce high levels of glutamate, which triggers paranodal pathology, contributing to axonal damage and conduction deficits
Maternal neurofascin-specific autoantibodies bind to structures of the fetal nervous system during pregnancy, but have no long term effect on development in the rat
Neurofascin was recently reported as a target for axopathic autoantibodies in patients with multiple sclerosis (MS), a response that will exacerbate axonal pathology and disease severity in an animal model of multiple sclerosis. As transplacental transfer of maternal autoantibodies can permanently damage the developing nervous system we investigated whether intrauterine exposure to this neurofascin-specific response had any detrimental effect on white matter tract development. To address this question we intravenously injected pregnant rats with either a pathogenic anti-neurofascin monoclonal antibody or an appropriate isotype control on days 15 and 18 of pregnancy, respectively, to mimic the physiological concentration of maternal antibodies in the circulation of the fetus towards the end of pregnancy. Pups were monitored daily with respect to litter size, birth weight, growth and motor development. Histological studies were performed on E20 embryos and pups sacrificed on days 2, 10, 21, 32 and 45 days post partum. Results: Immunohistochemistry for light and confocal microscopy confirmed passively transferred anti-neurofascin antibody had crossed the placenta to bind to distinct structures in the developing cortex and cerebellum. However, this did not result in any significant differences in litter size, birth weight, or general physical development between litters from control mothers or those treated with the neurofascin-specific antibody. Histological analysis also failed to identify any neuronal or white matter tract abnormalities induced by the neurofascin-specific antibody. Conclusions: We show that transplacental transfer of circulating anti-neurofascin antibodies can occur and targets specific structures in the CNS of the developing fetus. However, this did not result in any pre- or post-natal abnormalities in the offspring of the treated mothers. These results assure that even if anti-neurofascin responses are detected in pregnant women with multiple sclerosis these are unlikely to have a negative effect on their children
Social effects on age-related and sex-specific immune cell profiles in a wild mammal
Evidence for age-related changes in innate and adaptive immune responses is increasing in wild populations. Such changes have been linked to fitness, and knowledge of the factors driving immune response variation is important for understanding the evolution of immunity. Age-related changes in immune profiles may be owing to factors such as immune system development, sex-specific behaviour and responses to environmental conditions. Social environments may also contribute to variation in immunological responses, for example, through transmission of pathogens and stress arising from resource and mate competition. Yet, the impact of the social environment on age-related changes in immune cell profiles is currently understudied in the wild. Here, we tested the relationship between leukocyte cell composition (proportion of neutrophils and lymphocytes [innate and adaptive immunity, respectively] that were lymphocytes) and age, sex and group size in a wild population of European badgers (Meles meles). We found that the proportion of lymphocytes in early life was greater in males in smaller groups compared to larger groups, but with a faster age-related decline in smaller groups. By contrast, the proportion of lymphocytes in females was not significantly related to age or group size. Our results provide evidence of sex-specific age-related changes in immune cell profiles in a wild mammal, which are influenced by the social environment
DNA replication stress mediates APOBEC3 family mutagenesis in breast cancer
BACKGROUND: The APOBEC3 family of cytidine deaminases mutate the cancer genome in a range of cancer types. Although many studies have documented the downstream effects of APOBEC3 activity through next-generation sequencing, less is known about their upstream regulation. In this study, we sought to identify a molecular basis for APOBEC3 expression and activation.
RESULTS: HER2 amplification and PTEN loss promote DNA replication stress and APOBEC3B activity in vitro and correlate with APOBEC3 mutagenesis in vivo. HER2-enriched breast carcinomas display evidence of elevated levels of replication stress-associated DNA damage in vivo. Chemical and cytotoxic induction of replication stress, through aphidicolin, gemcitabine, camptothecin or hydroxyurea exposure, activates transcription of APOBEC3B via an ATR/Chk1-dependent pathway in vitro. APOBEC3B activation can be attenuated through repression of oncogenic signalling, small molecule inhibition of receptor tyrosine kinase signalling and alleviation of replication stress through nucleoside supplementation.
CONCLUSION: These data link oncogene, loss of tumour suppressor gene and drug-induced replication stress with APOBEC3B activity, providing new insights into how cytidine deaminase-induced mutagenesis might be activated in tumourigenesis and limited therapeutically
Phase separation and suppression of critical dynamics at quantum transitions of itinerant magnets: MnSi and (SrCa)RuO
Quantum phase transitions (QPTs) have been studied extensively in correlated
electron systems. Characterization of magnetism at QPTs has, however, been
limited by the volume-integrated feature of neutron and magnetization
measurements and by pressure uncertainties in NMR studies using powderized
specimens. Overcoming these limitations, we performed muon spin relaxation
(SR) measurements which have a unique sensitivity to volume fractions of
magnetically ordered and paramagnetic regions, and studied QPTs from itinerant
heli/ferro magnet to paramagnet in MnSi (single-crystal; varying pressure) and
(SrCa)RuO (ceramic specimens; varying ). Our results
provide the first clear evidence that both cases are associated with
spontaneous phase separation and suppression of dynamic critical behavior,
revealed a slow but dynamic character of the ``partial order'' diffuse spin
correlations in MnSi above the critical pressure, and, combined with other
known results in heavy-fermion and cuprate systems, suggest a possibility that
a majority of QPTs involve first-order transitions and/or phase separation.Comment: 11 pages, 4 figures, 21 authors, to appear in Nature Physic
Seagrass can mitigate negative ocean acidification effects on calcifying algae
The ultimate effect that ocean acidification (OA) and warming will have on the physiology of calcifying algae is still largely uncertain. Responses depend on the complex interactions between seawater chemistry, global/local stressors and species-specific physiologies. There is a significant gap regarding the effect that metabolic interactions between coexisting species may have on local seawater chemistry and the concurrent effect of OA. Here, we manipulated CO2 and temperature to evaluate the physiological responses of two common photoautotrophs from shallow tropical marine coastal ecosystems in Brazil: the calcifying alga Halimeda cuneata, and the seagrass Halodule wrightii. We tested whether or not seagrass presence can influence the calcification rate of a widespread and abundant species of Halimeda under OA and warming. Our results demonstrate that under elevated CO2, the high photosynthetic rates of H. wrightii contribute to raise H. cuneata calcification more than two-fold and thus we suggest that H. cuneata populations coexisting with H. wrightii may have a higher resilience to OA conditions. This conclusion supports the more general hypothesis that, in coastal and shallow reef environments, the metabolic interactions between calcifying and non-calcifying organisms are instrumental in providing refuge against OA effects and increasing the resilience of the more OA-susceptible species.E.B. would like to thank the Coordenação de Aperfeiçoamento de Pessoas de NÃvel Superior (CAPES) for Masters
funding. Funding for this project came from the Synergism grant (CNPq 407365/2013-3). We extend our thanks
to the Brazil-based Projeto Coral Vivo and its sponsor PetroBras Ambiental for providing the Marine Mesocosm
structure and experimental assistance.info:eu-repo/semantics/publishedVersio
From inclusion to independence – Training consumers to review research
Health and medical research invariably impacts on the lives of everyday people. Organisations in the developed world are increasingly involving the public in health research projects, and research governance structures and processes. The form the involvement takes varies, as does the level of involvement, from individuals, to groups, to the wider community. Lay community members can be trained to independently review health and medical research, and wider societal involvement in funding decisions, can be effectively fostered. The theoretical foundation, design and development of a task based consumer-training program, including a number of enabling factors to support the success of such training are presented. This work is likely to be of value to those planning to train consumers in technical or complex areas
Probing CPT in transitions with entangled neutral kaons
In this paper we present a novel CPT symmetry test in the neutral kaon system based, for the first time, on the direct comparison of the probabilities of a transition and its CPT reverse. The required interchange of in out states for a given process is obtained exploiting the Einstein-Podolsky-Rosen correlations of neutral kaon pairs produced at a phi-factory. The observable quantities have been constructed by selecting the two semileptonic decays for flavour tag, the pi and 3 pi(0) decays for CP tag and the time orderings of the decay pairs. The interpretation in terms of the standard Weisskopf-Wigner approach to this system, directly connects CPT violation in these observables to the violating R delta parameter in the mass matrix of K-0 (K) over bar (0), a genuine CPT violating effect independent of Delta Gamma and not requiring the decay as an essential ingredient. Possible spurious effects induced by CP violation in the decay and/or a violation of the Delta S = Delta Q rule have been shown to be well under control. The proposed test is thus fully robust, and might shed light on possible new CPT violating mechanisms, or further improve the precision of the present experimental limits. It could be implemented at the DA Phi NE facility in Frascati, where the KLOE-2 experiment might reach a statistical sensitivity of O (10(-3)) on the newly proposed observable quantities
- …