216 research outputs found

    Non-universal size dependence of the free energy of confined systems near criticality

    Full text link
    The singular part of the finite-size free energy density fsf_s of the O(n) symmetric ϕ4\phi^4 field theory in the large-n limit is calculated at finite cutoff for confined geometries of linear size L with periodic boundary conditions in 2 < d < 4 dimensions. We find that a sharp cutoff Λ\Lambda causes a non-universal leading size dependence fsΛd2L2f_s \sim \Lambda^{d-2} L^{-2} near TcT_c which dominates the universal scaling term Ld\sim L^{-d}. This implies a non-universal critical Casimir effect at TcT_c and a leading non-scaling term L2\sim L^{-2} of the finite-size specific heat above TcT_c.Comment: RevTex, 4 page

    Out-of-equilibrium properties of the semi-infinite kinetic spherical model

    Full text link
    We study the ageing properties of the semi-infinite kinetic spherical model at the critical point and in the ordered low-temperature phase, both for Dirichlet and Neumann boundary conditions. The surface fluctuation-dissipation ratio and the scaling functions of two-time surface correlation and response functions are determined explicitly in the dynamical scaling regime. In the low-temperature phase our results show that for the case of Dirichlet boundary conditions the value of the non-equilibrium surface exponent b1b_1 differs from the usual bulk value of systems undergoing phase ordering.Comment: 22 pages, 4 figures included, submitted to J. Phys.

    Exact Three Dimensional Casimir Force Amplitude, CC-function and Binder's Cumulant Ratio: Spherical Model Results

    Full text link
    The three dimensional mean spherical model on a hypercubic lattice with a film geometry L×2L\times \infty ^2 under periodic boundary conditions is considered in the presence of an external magnetic field HH. The universal Casimir amplitude Δ\Delta and the Binder's cumulant ratio BB are calculated exactly and found to be Δ=2ζ(3)/(5π)0.153051\Delta =-2\zeta (3)/(5\pi)\approx -0.153051 and B=2π/(5ln3[(1+5)/2]).B=2\pi /(\sqrt{5}\ln ^3[(1+\sqrt{5})/2]). A discussion on the relations between the finite temperature CC-function, usually defined for quantum systems, and the excess free energy (due to the finite-size contributions to the free energy of the system) scaling function is presented. It is demonstrated that the CC-function of the model equals 4/5 at the bulk critical temperature TcT_c. It is analytically shown that the excess free energy is a monotonically increasing function of the temperature TT and of the magnetic field H|H| in the vicinity of Tc.T_c. This property is supposed to hold for any classical dd-dimensional O(n),n>2,O(n),n>2, model with a film geometry under periodic boundary conditions when d3d\leq 3. An analytical evidence is also presented to confirm that the Casimir force in the system is negative both below and in the vicinity of the bulk critical temperature Tc.T_c.Comment: 12 pages revtex, one eps figure, submitted to Phys. Rev E A set of references added with the text needed to incorporate them. Small changes in the title and in the abstrac

    Fluctuation - induced forces in critical fluids

    Full text link
    The current knowledge about fluctuation - induced long - ranged forces is summarized. Reference is made in particular to fluids near critical points, for which some new insight has been obtained recently. Where appropiate, results of analytic theory are compared with computer simulations and experiments.Comment: Topical review, 24 pages RevTeX, 6 figure

    Pharmacokinetics of cytisine after single intravenous and oral administration in rabbits

    Get PDF
    The aim of this study is to develop a sensitive HPLC method for the quantitative determination of cytisine in serum and to characterize the pharmacokinetic behaviour of cytisine after oral and intravenous administration in rabbits. The pharmacokinetic behaviour of cytisine is studied in male and female New Zealand rabbits after oral and intravenous administration. Cytisine is administered orally (dose of 5 mg/kg b.w.) under fasting condition (12 hours) and intravenously (dose 1 mg/kg b.w.) in the marginal ear vein. Cytisine serum concentrations are measured using a highly selective and sensitive validated HPLC method with UV detection. Linearity of the method is in the range 12–2 400 µg/L; accuracy and precision are both within ± 10%, and the limit of detection is 4 µg/L. Selectivity and stability are also validated. Basic pharmacokinetic parameters of cytisine after single oral and intravenous administration are calculated using TOPFIT software. Pharmacokinetic analysis suggests a rapid but incomplete absorption of cytisine after oral administration

    Casimir forces in binary liquid mixtures

    Full text link
    If two ore more bodies are immersed in a critical fluid critical fluctuations of the order parameter generate long ranged forces between these bodies. Due to the underlying mechanism these forces are close analogues of the well known Casimir forces in electromagnetism. For the special case of a binary liquid mixture near its critical demixing transition confined to a simple parallel plate geometry it is shown that the corresponding critical Casimir forces can be of the same order of magnitude as the dispersion (van der Waals) forces between the plates. In wetting experiments or by direct measurements with an atomic force microscope the resulting modification of the usual dispersion forces in the critical regime should therefore be easily detectable. Analytical estimates for the Casimir amplitudes Delta in d=4-epsilon are compared with corresponding Monte-Carlo results in d=3 and their quantitative effect on the thickness of critical wetting layers and on force measurements is discussed.Comment: 34 pages LaTeX with revtex and epsf style, to appear in Phys. Rev.

    Measurement of higher cumulants of net-charge multiplicity distributions in Au++Au collisions at sNN=7.7200\sqrt{s_{_{NN}}}=7.7-200 GeV

    Full text link
    We report the measurement of cumulants (Cn,n=14C_n, n=1\ldots4) of the net-charge distributions measured within pseudorapidity (η<0.35|\eta|<0.35) in Au++Au collisions at sNN=7.7200\sqrt{s_{_{NN}}}=7.7-200 GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g. C1/C2C_1/C_2, C3/C1C_3/C_1) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do not observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. The measured values of C1/C2=μ/σ2C_1/C_2 = \mu/\sigma^2 and C3/C1=Sσ3/μC_3/C_1 = S\sigma^3/\mu can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperature and the baryon chemical potential at each center-of-mass energy.Comment: 512 authors, 8 pages, 4 figures, 1 table. v2 is version accepted for publication in Phys. Rev. C as a Rapid Communication. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore