18 research outputs found

    Cloning and characterization of a 9-lipoxygenase gene induced by pathogen attack from Nicotiana benthamiana for biotechnological application

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plant lipoxygenases (LOXs) have been proposed to form biologically active compounds both during normal developmental stages such as germination or growth as well as during responses to environmental stress such as wounding or pathogen attack. In our previous study, we found that enzyme activity of endogenous 9-LOX in <it>Nicotiana benthamiana </it>was highly induced by agroinfiltration using a tobacco mosaic virus (TMV) based vector system.</p> <p>Results</p> <p>A <it>LOX </it>gene which is expressed after treatment of the viral vectors was isolated from <it>Nicotiana benthamiana</it>. As the encoded LOX has a high amino acid identity to other 9-LOX proteins, the gene was named as <it>Nb-9-LOX</it>. It was heterologously expressed in yeast cells and its enzymatic activity was characterized. The yeast cells expressed large quantities of stable 9-LOX (0.9 U ml<sup>-1 </sup>cell cultures) which can oxygenate linoleic acid resulting in high yields (18 μmol ml<sup>-1 </sup>cell cultures) of hydroperoxy fatty acid. The product specificity of Nb-9-LOX was examined by incubation of linoleic acid and Nb-9-LOX in combination with a 13-hydroperoxide lyase from watermelon (Cl-13-HPL) or a 9/13-hydroperoxide lyase from melon (Cm-9/13-HPL) and by LC-MS analysis. The result showed that Nb-9-LOX possesses both 9- and 13-LOX specificity, with high predominance for the 9-LOX function. The combination of recombinant Nb-9-LOX and recombinant Cm-9/13-HPL produced large amounts of C<sub>9</sub>-aldehydes (3.3 μmol mg<sup>-1 </sup>crude protein). The yield of C<sub>9</sub>-aldehydes from linoleic acid was 64%.</p> <p>Conclusion</p> <p>The yeast expressed Nb-9-LOX can be used to produce C<sub>9</sub>-aldehydes on a large scale in combination with a <it>HPL </it>gene with 9-HPL function, or to effectively produce 9-hydroxy-10(<it>E</it>),12(<it>Z</it>)-octadecadienoic acid in a biocatalytic process in combination with cysteine as a mild reducing agent.</p
    corecore