1,897 research outputs found
Measuring dark matter by modeling interacting galaxies
The dark matter content of galaxies is usually determined from galaxies in
dynamical equilibrium, mainly from rotationally supported galactic components.
Such determinations restrict measurements to special regions in galaxies, e.g.
the galactic plane(s), whereas other regions are not probed at all. Interacting
galaxies offer an alternative, because extended tidal tails often probe outer
or off-plane regions of galaxies. However, these systems are neither in
dynamical equilibrium nor simple, because they are composed of two or more
galaxies, by this increasing the associated parameter space.We present our
genetic algorithm based modeling tool which allows to investigate the extended
parameter space of interacting galaxies. From these studies, we derive the
dynamical history of (well observed) galaxies. Among other parameters we
constrain the dark matter content of the involved galaxies. We demonstrate the
applicability of this strategy with examples ranging from stellar streams
around theMilkyWay to extended tidal tails, from proto-typical binary galaxies
(like M51 or the Antennae system) to small group of galaxies.Comment: 4 pages, 3 figures, Conf.: Hunting for the dark, Malta 200
Polaron Crystallization and Melting: Effects of the Long-Range Coulomb Forces
On examining the stability of a Wigner crystal in an ionic dielectric, two
competitive effects due to the polaron formation are found to be important: (i)
the screening of the Coulomb force, which destabilizes the crystal, compensated
by (ii) the increase of the carrier mass (polaron mass). The competition
between the two effects is carefully studied, and the quantum melting of the
polaronic Wigner crystal is examined by varying the density at zero
temperature. By calculating the quantum fluctuations of both the electron and
the polarization, we show that there is a competition between the dissociation
of the polarons at the insulator-to-metal transition (IMT), and a melting
towards a polaron liquid. We find that at strong coupling, a liquid state of
dielectric polarons cannot exist, and the IMT is driven by the polaron
dissociation. Next, taking into account the dipolar interactions between
localized carriers, we show that these are responsible for an instability of
the transverse vibrational modes of the polaronic Wigner crystal as the density
increases. This provides a new mechanism for the IMT in doped dielectrics,
which yields interesting dielectric properties below and beyond the transition.
An optical signature of such a mechanism for the IMT is provided.Comment: 10 pages, 3 figures, to be published in Int.J.Mod.Phys.
Search for cold and hot gas in the ram pressure stripped Virgo dwarf galaxy IC3418
We present IRAM 30m sensitive upper limits on CO emission in the ram pressure
stripped dwarf Virgo galaxy IC3418 and in a few positions covering HII regions
in its prominent 17 kpc UV/Ha gas-stripped tail. In the central few arcseconds
of the galaxy, we report a possible marginal detection of about 1x10^6 M_sun of
molecular gas (assuming a Galactic CO-to-H_2 conversion factor) that could
correspond to a surviving nuclear gas reservoir. We estimate that there is less
molecular gas in the main body of IC3418, by at least a factor of 20, than
would be expected from the pre-quenching UV-based star formation rate assuming
the typical gas depletion timescale of 2 Gyr. Given the lack of star formation
in the main body, we think the H_2-deficiency is real, although some of it may
also arise from a higher CO-to-H_2 factor typical in low-metallicity, low-mass
galaxies. The presence of HII regions in the tail of IC3418 suggests that there
must be some dense gas; however, only upper limits of < 1x10^6 M_sun were found
in the three observed points in the outer tail. This yields an upper limit on
the molecular gas content of the whole tail < 1x10^7 M_sun, which is an amount
similar to the estimates from the observed star formation rate over the tail.
We also present strong upper limits on the X-ray emission of the stripped gas
in IC3418 from a new Chandra observation. The measured X-ray luminosity of the
IC3418 tail is about 280 times lower than that of ESO 137-001, a spiral galaxy
in a more distant cluster with a prominent ram pressure stripped tail.
Non-detection of any diffuse X-ray emission in the IC3418 tail may be due to a
low gas content in the tail associated with its advanced evolutionary state
and/or due to a rather low thermal pressure of the surrounding intra-cluster
medium.Comment: 15 pages, 11 figures, A&A accepte
Photodynamic Therapy of Necrobiosis Lipoidica - A Multicenter Study of 18 Patients
Background: Necrobiosis lipoidica (NL) is a granulomatous skin disease of unknown origin, and no reliably effective treatment option exists to handle this often disfiguring disease. Recently, a patient with long-lasting NL was reported to be cured by topical photodynamic therapy (PDT). Objective: To evaluate the overall potential of PDT in the treatment of NL on the lower legs. Methods: Retrospective study of 18 patients (aged 16 - 62 years) from 3 European university departments of dermatology treated with PDT for NL. Methyl aminolevulinate or 5-aminolevulinic acid were used as topically applied photosensitizers. Illumination followed with red light-emitting diode light. Results: Complete response was seen in 1/18 patients after 9 PDT cycles, and partial response in 6/18 patients (2 - 14 PDT cycles) giving an overall response rate of 39% (7/18). Conclusion: Although almost 40% of the cases showed some degree of response, PDT cannot currently be recommended as first-line therapy of NL. Subpopulations of therapy-resistant NL patients may, however, benefit from PDT. Copyright (C) 2008 S. Karger AG, Base
Spatially resolved femtosecond pump-probe study of topological insulator Bi2Se3
Carrier and phonon dynamics in Bi2Se3 crystals are studied by a spatially
resolved ultrafast pump-probe technique. Pronounced oscillations in
differential reflection are observed with two distinct frequencies, and are
attributed to coherent optical and acoustic phonons, respectively. The rising
time of the signal indicates that the thermalization and energy relaxation of
hot carriers are both sub-ps in this material. We found that the thermalization
and relaxation time decreases with the carrier density. The expansion of the
differential reflection profile allows us to estimate an ambipolar carrier
diffusion coefficient on the order of 500 square centimeters per second. A
long-term slow expansion of the profile shows a thermal diffusion coefficient
of 1.2 square centimeters per second.Comment: 8 pages, 6 figure
Competing interactions in arrested states of colloidal clays
Using experiments, theory and simulations, we show that the arrested state
observed in a colloidal clay at intermediate concentrations is stabilized by
the screened Coulomb repulsion (Wigner glass). Dilution experiments allow us to
distinguish this high-concentration disconnected state, which melts upon
addition of water, from a low-concentration gel state, which does not melt.
Theoretical modelling and simulations reproduce the measured Small Angle X-Ray
Scattering static structure factors and confirm the long-range electrostatic
nature of the arrested structure. These findings are attributed to the
different timescales controlling the competing attractive and repulsive
interactions.Comment: Accepted for publication in Physical Review Letter
Impact of the indexed effective orifice area on mid-term cardiac-related mortality after aortic valve replacement
Background There has been ongoing controversy as to whether prosthesis-patient mismatch (PPM, defined as indexed effective orifice area (EOAI) <0.85 m(2)/cm(2)) influences mortality after aortic valve replacement (AVR). In most studies, PPM is anticipated by reference tables based on mean EOAs as opposed to individual assessment. These reference values may not reflect the actual in vivo EOAI and hence, the presence or absence of PPM may be based on false assumptions. Objective To assess the impact of small prosthesis EOA on survival after aortic valve replacement AVR. Methods 645 patients had undergone an AVR between 2000 and 2007 entered the study. All patients underwent transthoracic echocardiography for determination of the actual EOAI within 6 months postoperatively. In order to predict time from surgery to death a proportional hazards model for competing risks (cardiac death vs death from other causes) was used. EOAI was entered as a continuous variable. Results PPM occurred in 40% of the patients. After a median follow-up of 2.35 years, 92.1% of the patients were alive. The final Cox regression model showed a significantly increased risk for cardiac death among patients with a smaller EOAI (HR=0.32, p=0.022). The effect of EOAI on the 2-5 year mortality risk was demonstrated by risk plots. Conclusions In contrast to previous studies these EOAI values were obtained through postoperative echocardiography, substantially improving the accuracy of measurement, and the EOAI was modelled as a continuous variable. There was a significantly improved survival for larger EOAIs following AVR. Strategies to avoid PPM should become paramount during AVR
Evidence of anomalous dispersion of the generalized sound velocity in glasses
The dynamic structure factor, S(Q,w), of vitreous silica, has been measured
by inelastic X-ray scattering in the exchanged wavevector (Q) region Q=4-16.5
nm-1 and up to energies hw=115 meV in the Stokes side. The unprecedented
statistical accuracy in such an extended energy range allows to accurately
determine the longitudinal current spectra, and the energies of the vibrational
excitations. The simultaneous observation of two excitations in the acoustic
region, and the persistence of propagating sound waves up to Q values
comparable with the (pseudo-)Brillouin zone edge, allow to observe a positive
dispersion in the generalized sound velocity that, around Q=5 nm-1, varies from
6500 to 9000 m/s: this phenomenon was never experimentally observed in a glass.Comment: 5 pages, 3 figures. To appear in Phys. Rev.
Charge-density wave formation in Sr_{14}Cu_{24}O_{41}
The electrodynamic response of the spin-ladder compound
SrCaCuO () has been studied from
radiofrequencies up to the infrared. At temperatures below 250 K a pronounced
absorption peak appears around 12 cm in SrCuO for
the radiation polarized along the chains/ladders ().
In addition a strongly temperature dependent dielectric relaxation is observed
in the kHz - MHz range. We explain this behavior by a charge density wave which
develops in the ladders sub-system and produces a mode pinned at 12 cm.
With increasing Ca doping the mode shifts up in frequency and eventually
disappears for because the dimensionality of the system crosses over from
one to two dimensions, giving way to the superconducting ground state under
pressure.Comment: One name added to author list 4 pages, 2 figures, email:
[email protected]
- …