81 research outputs found
Long-range Heisenberg models in quasi-periodically driven crystals of trapped ions
We introduce a theoretical scheme for the analog quantum simulation of
long-range XYZ models using current trapped-ion technology. In order to achieve
fully-tunable Heisenberg-type interactions, our proposal requires a
state-dependent dipole force along a single vibrational axis, together with a
combination of standard resonant and detuned carrier drivings. We discuss how
this quantum simulator could explore the effect of long-range interactions on
the phase diagram by combining an adiabatic protocol with the quasi-periodic
drivings and test the validity of our scheme numerically. At the isotropic
Heisenberg point, we show that the long-range Hamiltonian can be mapped onto a
non-linear sigma model with a topological term that is responsible for its
low-energy properties, and we benchmark our predictions with
Matrix-Product-State numerical simulations.Comment: closer to published versio
Coherent Imaging Spectroscopy of a Quantum Many-Body Spin System
Quantum simulators, in which well controlled quantum systems are used to
reproduce the dynamics of less understood ones, have the potential to explore
physics that is inaccessible to modeling with classical computers. However,
checking the results of such simulations will also become classically
intractable as system sizes increase. In this work, we introduce and implement
a coherent imaging spectroscopic technique to validate a quantum simulation,
much as magnetic resonance imaging exposes structure in condensed matter. We
use this method to determine the energy levels and interaction strengths of a
fully-connected quantum many-body system. Additionally, we directly measure the
size of the critical energy gap near a quantum phase transition. We expect this
general technique to become an important verification tool for quantum
simulators once experiments advance beyond proof-of-principle demonstrations
and exceed the resources of conventional computers
Non-thermalization in trapped atomic ion spin chains
Linear arrays of trapped and laser cooled atomic ions are a versatile
platform for studying emergent phenomena in strongly-interacting many-body
systems. Effective spins are encoded in long-lived electronic levels of each
ion and made to interact through laser mediated optical dipole forces. The
advantages of experiments with cold trapped ions, including high spatiotemporal
resolution, decoupling from the external environment, and control over the
system Hamiltonian, are used to measure quantum effects not always accessible
in natural condensed matter samples. In this review we highlight recent work
using trapped ions to explore a variety of non-ergodic phenomena in long-range
interacting spin-models which are heralded by memory of out-of-equilibrium
initial conditions. We observe long-lived memory in static magnetizations for
quenched many-body localization and prethermalization, while memory is
preserved in the periodic oscillations of a driven discrete time crystal state.Comment: 14 pages, 5 figures, submitted for edition of Phil. Trans. R. Soc. A
on "Breakdown of ergodicity in quantum systems
Experimental Realization of a Quantum Integer-Spin Chain with Controllable Interactions
The physics of interacting integer-spin chains has been a topic of intense
theoretical interest, particularly in the context of symmetry-protected
topological phases. However, there has not been a controllable model system to
study this physics experimentally. We demonstrate how spin-dependent forces on
trapped ions can be used to engineer an effective system of interacting spin-1
particles. Our system evolves coherently under an applied spin-1 XY Hamiltonian
with tunable, long-range couplings, and all three quantum levels at each site
participate in the dynamics. We observe the time evolution of the system and
verify its coherence by entangling a pair of effective three-level particles
(`qutrits') with 86% fidelity. By adiabatically ramping a global field, we
produce ground states of the XY model, and we demonstrate an instance where the
ground state cannot be created without breaking the same symmetries that
protect the topological Haldane phase. This experimental platform enables
future studies of symmetry-protected order in spin-1 systems and their use in
quantum applications
Many-body localization in a quantum simulator with programmable random disorder
When a system thermalizes it loses all local memory of its initial
conditions. This is a general feature of open systems and is well described by
equilibrium statistical mechanics. Even within a closed (or reversible) quantum
system, where unitary time evolution retains all information about its initial
state, subsystems can still thermalize using the rest of the system as an
effective heat bath. Exceptions to quantum thermalization have been predicted
and observed, but typically require inherent symmetries or noninteracting
particles in the presence of static disorder. The prediction of many-body
localization (MBL), in which disordered quantum systems can fail to thermalize
in spite of strong interactions and high excitation energy, was therefore
surprising and has attracted considerable theoretical attention. Here we
experimentally generate MBL states by applying an Ising Hamiltonian with
long-range interactions and programmably random disorder to ten spins
initialized far from equilibrium. We observe the essential signatures of MBL:
memory retention of the initial state, a Poissonian distribution of energy
level spacings, and entanglement growth in the system at long times. Our
platform can be scaled to higher numbers of spins, where detailed modeling of
MBL becomes impossible due to the complexity of representing such entangled
quantum states. Moreover, the high degree of control in our experiment may
guide the use of MBL states as potential quantum memories in naturally
disordered quantum systems.Comment: 9 pages, 9 figure
Exploring out-of-equilibrium quantum magnetism and thermalization in a spin-3 many-body dipolar lattice system
Understanding quantum thermalization through entanglement build-up in
isolated quantum systems addresses fundamental questions on how unitary
dynamics connects to statistical physics. Here, we study the spin dynamics and
approach towards local thermal equilibrium of a macroscopic ensemble of S = 3
spins prepared in a pure coherent spin state, tilted compared to the magnetic
field, under the effect of magnetic dipole-dipole interactions. The experiment
uses a unit filled array of 104 chromium atoms in a three dimensional optical
lattice, realizing the spin-3 XXZ Heisenberg model. The buildup of quantum
correlation during the dynamics, especially as the angle approaches pi/2, is
supported by comparison with an improved numerical quantum phase-space method
and further confirmed by the observation that our isolated system thermalizes
under its own dynamics, reaching a steady state consistent with the one
extracted from a thermal ensemble with a temperature dictated from the system's
energy. This indicates a scenario of quantum thermalization which is tied to
the growth of entanglement entropy. Although direct experimental measurements
of the Renyi entropy in our macroscopic system are unfeasible, the excellent
agreement with the theory, which can compute this entropy, does indicate
entanglement build-up.Comment: 12 figure
The Interspersed Spin Boson Lattice Model
We describe a family of lattice models that support a new class of quantum
magnetism characterized by correlated spin and bosonic ordering [Phys. Rev.
Lett. 112, 180405 (2014)]. We explore the full phase diagram of the model using
Matrix-Product-State methods. Guided by these numerical results, we describe a
modified variational ansatz to improve our analytic description of the
groundstate at low boson frequencies. Additionally, we introduce an
experimental protocol capable of inferring the low-energy excitations of the
system by means of Fano scattering spectroscopy. Finally, we discuss the
implementation and characterization of this model with current circuit-QED
technology.Comment: Submitted to EPJ ST issue on "Novel Quantum Phases and Mesoscopic
Physics in Quantum Gases
- …