239 research outputs found

    Correction induced by irrelevant operators in the correlators of the 2d Ising model in a magnetic field

    Get PDF
    We investigate the presence of irrelevant operators in the 2d Ising model perturbed by a magnetic field, by studying the corrections induced by these operators in the spin-spin correlator of the model. To this end we perform a set of high precision simulations for the correlator both along the axes and along the diagonal of the lattice. By comparing the numerical results with the predictions of a perturbative expansion around the critical point we find unambiguous evidences of the presence of such irrelevant operators. It turns out that among the irrelevant operators the one which gives the largest correction is the spin 4 operator T^2 + \bar T^2 which accounts for the breaking of the rotational invariance due to the lattice. This result agrees with what was already known for the correlator evaluated exactly at the critical point and also with recent results obtained in the case of the thermal perturbation of the model.Comment: 28 pages, no figure

    Finding critical points using improved scaling Ansaetze

    Full text link
    Analyzing in detail the first corrections to the scaling hypothesis, we develop accelerated methods for the determination of critical points from finite size data. The output of these procedures are sequences of pseudo-critical points which rapidly converge towards the true critical points. In fact more rapidly than previously existing methods like the Phenomenological Renormalization Group approach. Our methods are valid in any spatial dimensionality and both for quantum or classical statistical systems. Having at disposal fast converging sequences, allows to draw conclusions on the basis of shorter system sizes, and can be extremely important in particularly hard cases like two-dimensional quantum systems with frustrations or when the sign problem occurs. We test the effectiveness of our methods both analytically on the basis of the one-dimensional XY model, and numerically at phase transitions occurring in non integrable spin models. In particular, we show how a new Homogeneity Condition Method is able to locate the onset of the Berezinskii-Kosterlitz-Thouless transition making only use of ground-state quantities on relatively small systems.Comment: 16 pages, 4 figures. New version including more general Ansaetze basically applicable to all case

    Irrelevant operators in the two-dimensional Ising model

    Full text link
    By using conformal-field theory, we classify the possible irrelevant operators for the Ising model on the square and triangular lattices. We analyze the existing results for the free energy and its derivatives and for the correlation length, showing that they are in agreement with the conformal-field theory predictions. Moreover, these results imply that the nonlinear scaling field of the energy-momentum tensor vanishes at the critical point. Several other peculiar cancellations are explained in terms of a number of general conjectures. We show that all existing results on the square and triangular lattice are consistent with the assumption that only nonzero spin operators are present.Comment: 32 pages. Added comments and reference

    Quenched bond dilution in two-dimensional Potts models

    Full text link
    We report a numerical study of the bond-diluted 2-dimensional Potts model using transfer matrix calculations. For different numbers of states per spin, we show that the critical exponents at the random fixed point are the same as in self-dual random-bond cases. In addition, we determine the multifractal spectrum associated with the scaling dimensions of the moments of the spin-spin correlation function in the cylinder geometry. We show that the behaviour is fully compatible with the one observed in the random bond case, confirming the general picture according to which a unique fixed point describes the critical properties of different classes of disorder: dilution, self-dual binary random-bond, self-dual continuous random bond.Comment: LaTeX file with IOP macros, 29 pages, 14 eps figure

    Progress of the Felsenkeller shallow-underground accelerator for nuclear astrophysics

    Full text link
    Low-background experiments with stable ion beams are an important tool for putting the model of stellar hydrogen, helium, and carbon burning on a solid experimental foundation. The pioneering work in this regard has been done by the LUNA collaboration at Gran Sasso, using a 0.4 MV accelerator. In the present contribution, the status of the project for a higher-energy underground accelerator is reviewed. Two tunnels of the Felsenkeller underground site in Dresden, Germany, are currently being refurbished for the installation of a 5 MV high-current Pelletron accelerator. Construction work is on schedule and expected to complete in August 2017. The accelerator will provide intense, 50 uA, beams of 1H+, 4He+, and 12C+ ions, enabling research on astrophysically relevant nuclear reactions with unprecedented sensitivity.Comment: Submitted to the Proceedings of Nuclei in the Cosmos XIV, 19-24 June 2016, Niigata/Japa

    Parallelization of an unstructured grid, hydrodynamic-diffusion code

    Full text link

    Finite-size scaling corrections in two-dimensional Ising and Potts ferromagnets

    Full text link
    Finite-size corrections to scaling of critical correlation lengths and free energies of Ising and three-state Potts ferromagnets are analysed by numerical methods, on strips of width NN sites of square, triangular and honeycomb lattices. Strong evidence is given that the amplitudes of the ``analytical'' correction terms, N−2N^{-2}, are identically zero for triangular-- and honeycomb Ising systems. For Potts spins, our results are broadly consistent with this lattice-dependent pattern of cancellations, though for correlation lengths non-vanishing (albeit rather small) amplitudes cannot be entirely ruled out.Comment: 11 pages, LaTeX with Institute of Physics macros, 2 EPS figures; to appear in Journal of Physics

    SU(2)/Z2SU(2)/Z_2 symmetry of the BKT transition and twisted boundary conditio n

    Full text link
    Berezinskii-Kosterlitz-Thouless (BKT) transition, the transition of the 2D sine-Gordon model, plays an important role in the low dimensional physics. We relate the operator content of the BKT transition to that of the SU(2) Wess-Zumino-Witten model, using twisted boundary conditions. With this method, in order to determine the BKT critical point, we can use the level crossing of the lower excitations than the periodic boundary case, thus the convergence to the transition point is highly improved. Then we verify the efficiency of this method by applying to the S=1,2 spin chains.Comment: LaTex2e,, 33 pages, 14 figures in eps file

    Global Standards in Action: Insights from Anti-Money Laundering Regulation

    Get PDF
    As organizations have come under the increasing influence of global rules of all sorts, organization scholars have started studying the dynamics of global regulation. The purpose of this article is to identify and evaluate the contribution to this interdisciplinary field by the ‘Stockholm Centre for Organisational Research’. The latter’s key proposition is that while global regulation often consists of voluntary best practice rules it can nevertheless become highly influential under certain conditions. We assess how innovative this approach is using as a benchmark the state of the art in another field of relevance to the study of global regulation, i.e. ‘International Relations’. Our discussion is primarily theoretical but we draw on the case of global anti-money laundering regulation to illustrate our arguments and for inspirations of how to further elaborate the approach
    • 

    corecore