7 research outputs found

    Binding energy of shallow donors in a quantum well in the presence of a tilted magnetic field

    Full text link
    We present results of variational calculations of the binding energy of a neutral donor in a quantum well in the presence of a magnetic field tilted relative to the QW plane. Assuming that the donor is located in the center of the QW, we perform calculations for parameters typical of a II-VI wide-gap semiconductor heterostructure, using as an example the case of a rectangular CdTe quantum well with CdMgTe barriers. We present the dependence of the binding energy of a neutral donor on the tilt angle and on the magnitude of the applied magnetic filed. As a key result, we show that measurement of the binding energy of a donor at two angles of the magnetic field with respect to the quantum well plane can be used to unambiguously determined the conduction band offset of the materials building up heterostructure.Comment: 6 pages, 5 figure

    Zero- and one-dimensional magnetic traps for quasi-particles

    Full text link
    We investigate the possibility of trapping quasi-particles possessing spin degree of freedom in hybrid structures. The hybrid system we are considering here is composed of a semi-magnetic quantum well placed a few nanometers below a ferromagnetic micromagnet. We are interested in two different micromagnet shapes: cylindrical (micro-disk) and rectangular geometry. We show that in the case of a micro-disk, the spin object is localized in all three directions and therefore zero-dimensional states are created, and in the case of an elongated rectangular micromagnet, the quasi-particles can move freely in one direction, hence one-dimensional states are formed. After calculating profiles of the magnetic field produced by the micromagnets, we analyze in detail the possible light absorption spectrum for different micromagnet thicknesses, and different distances between the micromagnet and the semimagnetic quantum well. We find that the discrete spectrum of the localized states can be detected via spatially-resolved low temperature optical measurement.Comment: 15 pages, 9 figure

    Anomalous behavior of spin wave resonances in Ga_{1-x}Mn_{x}As thin films

    Full text link
    We report ferromagnetic and spin wave resonance absorption measurements on high quality epitaxially grown Ga_{1-x}Mn_{x}As thin films. We find that these films exhibit robust ferromagnetic long-range order, based on the fact that up to seven resonances are detected at low temperatures, and the resonance structure survives to temperatures close to the ferromagnetic transition. On the other hand, we observe a spin wave dispersion which is linear in mode number, in qualitative contrast with the quadratic dispersion expected for homogeneous samples. We perform a detailed numerical analysis of the experimental data and provide analytical calculations to demonstrate that such a linear dispersion is incompatible with uniform magnetic parameters. Our theoretical analysis of the ferromagnetic resonance data, combined with the knowledge that strain-induced anisotropy is definitely present in these films, suggests that a spatially dependent magnetic anisotropy is the most likely reason behind the anomalous behavior observed.Comment: 9 pages, including 6 figure
    corecore