13 research outputs found

    Abstraction in ecology : reductionism and holism as complementary heuristics

    Get PDF
    In addition to their core explanatory and predictive assumptions, scientific models include simplifying assumptions, which function as idealizations, approximations, and abstractions. There are methods to investigate whether simplifying assumptions bias the results of models, such as robustness analyses. However, the equally important issue - the focus of this paper - has received less attention, namely, what are the methodological and epistemic strengths and limitations associated with different simplifying assumptions. I concentrate on one type of simplifying assumption, the use of mega parameters as abstractions in ecological models. First, I argue that there are two kinds of mega parameters qua abstractions, sufficient parameters and aggregative parameters, which have gone unnoticed in the literature. The two are associated with different heuristics, holism and reductionism, which many view as incompatible. Second, I will provide a different analysis of abstractions and the associated heuristics than previous authors. Reductionism and holism and the accompanying abstractions have different methodological and epistemic functions, strengths, and limitations, and the heuristics should be viewed as providing complementary research perspectives of cognitively limited beings. This is then, third, used as a premise to argue for epistemic and methodological pluralism in theoretical ecology. Finally, the presented taxonomy of abstractions is used to comment on the current debate whether mechanistic accounts of explanation are compatible with the use of abstractions. This debate has suffered from an abstract discussion of abstractions. With a better taxonomy of abstractions the debate can be resolved.Peer reviewe

    Dye-doped sol-gel coatings for near-infrared laser protection

    No full text

    The effects of scaling on age, sex and size relationships in Red-legged Partridges

    Get PDF
    Wild birds differ in size according to their age and sex, adult birds being larger than juveniles. In the galliforms, males are larger than females, in contrast to some groups, such as the raptors, in which the females are larger. Size generally influences the rank hierarchy within a group of birds, although the age, sex, temperament and behaviour of an individual may override its size related rank order. The scaled size of birds according to age and sex affects their physiology and behaviour. Precise details of body-size differences by age and sex are poorly known in most partridge species. We measured 13,814 wild partridges in a homogenous population over 14 years of study to evaluate size differences within a uniform habitat and population management regime. We show that wild Red-legged Partridges have scaled mass, and body- and wing-lengths consistent with age/sex classes. Power functions between mass and body-length (as a proxy for walking efficiency), and between mass and wing-length (for flight efficiency) differ between juvenile females and males, and adult females and males. We discuss these findings and their physiological, behavioural and ecological implications.A.M. was supported by a Ramón y Cajal research contract by the Ministry of Economy and Competitiveness (RYC-2012-11867).Peer reviewe
    corecore