16,657 research outputs found

    Accretion and activity on the post-common-envelope binary RR~Cae

    Full text link
    Current scenarios for the evolution of interacting close binaries - such as cataclysmic variables (CVs) - rely mainly on our understanding of low-mass star angular momentum loss (AML) mechanisms. The coupling of stellar wind with its magnetic field, i.e., magnetic braking, is the most promising mechanism to drive AML in these stars. There are basically two properties driving magnetic braking: the stellar magnetic field and the stellar wind. Understanding the mechanisms that drive AML therefore requires a comprehensive understanding of these two properties. RRCae is a well-known nearby (d=20pc) eclipsing DA+M binary with an orbital period of P=7.29h. The system harbors a metal-rich cool white dwarf (WD) and a highly active M-dwarf locked in synchronous rotation. The metallicity of the WD suggests that wind accretion is taking place, which provides a good opportunity to obtain the mass-loss rate of the M-dwarf component. We analyzed multi-epoch time-resolved high-resolution spectra of RRCae in search for traces of magnetic activity and accretion. We selected a number of well-known activity indicators and studied their short and long-term behavior. Indirect-imaging tomographic techniques were also applied to provide the surface brightness distribution of the magnetically active M-dwarf, and reveals a polar feature similar to those observed in fast-rotating solar-type stars. The blue part of the spectrum was modeled using a atmosphere model to constrain the WD properties and its metal enrichment. The latter was used to improve the determination of the mass-accretion rate from the M-dwarf wind. The presence of metals in the WD spectrum suggests that this component arises from accretion of the M-dwarf wind. A model fit to the WD gives Teff=(7260+/-250)K and logg=(7.8+/-0.1) dex with a metallicity of =(-2.8+/-0.1)dex, and a mass-accretion rate of dotMacc=(7+/-2)x1e-16Msun/yr.Comment: 14 pages, 7 Figures, 6 Table

    Soliton Stability in Systems of Two Real Scalar Fields

    Get PDF
    In this paper we consider a class of systems of two coupled real scalar fields in bidimensional spacetime, with the main motivation of studying classical or linear stability of soliton solutions. Firstly, we present the class of systems and comment on the topological profile of soliton solutions one can find from the first-order equations that solve the equations of motion. After doing that, we follow the standard approach to classical stability to introduce the main steps one needs to obtain the spectra of Schr\"odinger operators that appear in this class of systems. We consider a specific system, from which we illustrate the general calculations and present some analytical results. We also consider another system, more general, and we present another investigation, that introduces new results and offers a comparison with the former investigations.Comment: 16 pages, Revtex, 3 f igure

    Nanometric pitch in modulated structures of twist-bend nematic liquid crystals

    Full text link
    The extended Frank elastic energy density is used to investigate the existence of a stable periodically modulate structure that appears as a ground state exhibiting a twist-bend molecular arrangement. For an unbounded sample, we show that the twist-bend nematic phase NTBN_{TB} is characterized by a heliconical structure with a pitch in the nano-metric range, in agreement with experimental results. For a sample of finite thickness, we show that the wave vector of the stable periodic structure depends not only on the elastic parameters but also on the anchoring energy, easy axis direction, and the thickness of the sample.Comment: 11 page

    Utilização de terra diatomácea para proteção de grãos e sementes de sorgo contra insetos-pragas, durante o armazenamento.

    Get PDF
    bitstream/CNPMS/19640/1/Com_139.pd

    Production of optical phase space vortices with non-locally distributed mode converters

    Full text link
    Optical vortices have been observed in a wide variety of optical systems. They can be observed directly in the wavefront of optical beams, or in the correlations between pairs of entangled photons. We present a novel optical vortex which appears in a non-local plane of the two-photon phase space, composed of a single degree of freedom of each photon of an entangled pair. The preparation of this vortex can be viewed as a "non-local" or distributed mode converter. We show how these novel optical vortices of arbitrary order can be prepared in the spatial degrees of freedom of entangled photons.Comment: To appear in upcoming special issue "Orbital Angular Momentum" of the Journal of Optic
    corecore