28 research outputs found

    Engineering metal oxide nanostructures for the fiber optic sensor platform

    Get PDF
    This paper presents an effective integration scheme of nanostructured SnO2 with the fiber optic platform for chemical sensing applications based on evanescent optical interactions. By using a triblock copolymer as a structure directing agent as the means of nano-structuring, the refractive index of SnO2 is reduced from >2.0 to 1.46, in accordance with effective medium theory for optimal on-fiber integration. Hightemperature stable fiber Bragg gratings inscribed in D-shaped fibers were used to perform real-time characterization of optical absorption and refractive index modulation of metal oxides in response to NH3 from the room temperature to 500°C. Measurement results reveals that the redox reaction of the nanostructured metal oxides exposed to a reactive gas NH3 induces much stronger changes in optical absorption as opposed to changes in the refractive index. Results presented in this paper provide important guidance for fiber optic chemical sensing designs based on metal oxide nanomaterials. © 2014 Optical Society of America

    The influence of pressure on the phase stability of nanocomposite Fe_(89)Zr_7B_4 during heating from energy dispersive x-ray diffraction

    Get PDF
    Nanocomposite materials consisting of small crystalline grains embedded within an amorphous matrix show promise for many soft magnetic applications. The influence of pressure is investigated by in situ diffraction of hammer milled Fe_(89)Zr_(7)B_4 during heating through the α → γ Fe transition at 0.5, 2.2, and 4.9 GPa. The changes in primary and secondary crystallization onset are described by diffusion and the energy to form a critical nucleus within the framework of classical nucleation theory

    Magnetic anisotropy and crystalline texture in BaO(Fe2O3)(6) thin films deposited on GaN/Al2O3

    Get PDF
    BaO(Fe2O3)6 (BaM) thin films were deposited by pulsed laser deposition on GaN∕Al2O3 substrates. A pole figure obtained from the (006) reflection indicated that ∼81% of the film volume had the c axis tilted less than 5° from the film normal. A low anisotropy field was inferred from vector coil vibrating sample magnetometer (VVSM) measurements. The reduction in Hafrom literature values and a two-step switching of the easy axis magnetization is postulated to result from interdiffusion and misalignment effects. To alleviate interdiffusion and to improve the c-axis alignment, experiments were repeated with lower deposition temperatures, thinner films, and MgO buffer layers. The features of the hysteresis loop due to two-step switching and the in-plane coercivity were reduced while the anisotropy field (Ha) was larger. Films deposited with MgO buffer layers are observed to have single-step switching of the easy axis magnetization, larger anisotropy fields, and sharp ferromagnetic resonance (FMR) peaks. Films with MgO buffer layers were determined to have anisotropy fields Ha=1.57T by FMR and Ha∼1.5–1.6Tas determined from the difference in the saturation fields for the easy and hard axis loops
    corecore