3,151 research outputs found
A Chandra observation of the H2O megamaser IC2560
A short Chandra ACIS-S observation of the Seyfert 2 galaxy IC 2560, which
hosts a luminous nuclear water megamaser, shows: 1) the X-ray emission is
extended; 2) the X-ray spectrum shows emission features in the soft (E<2 keV)
X-ray band; this is the major component of the extended emission; and 3) a very
strong (EW~3.6 keV) iron K line at 6.4 keV on a flat continuum. This last
feature clearly indicates that the X-ray source is hidden behind Compton-thick
obscuration, so that the intrinsic hard X-ray luminosity must be much higher
than observed, probably close to ~3e42 erg/s. We briefly discuss the
implications for powering of the maser emission and the central source.Comment: 5 pages, MNRAS in pres
L'CO/LFIR Relations with CO Rotational Ladders of Galaxies Across the Herschel SPIRE Archive
We present a catalog of all CO (J=4-3 through J=13-12)), [CI], [NII] lines
available from extragalactic spectra from the Herschel SPIRE Fourier Transform
Spectrometer (FTS) archive combined with observations of the low-J CO lines
from the literature and from the Arizona Radio Observatory. This work examines
the relationships between LFIR, L'CO, and LCO/LCO(1-0). We also present a new
method for estimating probability distribution functions (PDFs) from marginal
signal-to-noise ratio Herschel} FTS spectra, which takes into account the
instrumental "ringing" and the resulting highly correlated nature of the
spectra. The slopes of log(LFIR) vs. log(L'CO) are linear for all mid- to
high-J CO lines and slightly sublinear if restricted to (U)LIRGs. The mid- to
high-J CO luminosity relative to CO J=1-0 increases with increasing LFIR,
indicating higher excitement of the molecular gas, though these ratios do not
exceed ~ 180. For a given bin in LFIR, the luminosities relative to CO J=1-0
remain relatively flat from J=6-5 through J=13-12, across three orders of
magnitude of LFIR. A single component theoretical photon-dominated region (PDR)
model cannot match these flat SLED shapes, though combinations of PDR models
with mechanical heating added qualitatively match the shapes, indicating the
need for further comprehensive modeling of the excitation processes of warm
molecular gas in nearby galaxies.Comment: 17 pages, 4 figures (including appendix), accepted by ApJ. Full
tables will be in VizieR upon publication, email first author for tables in
the meantim
The Escape of Ionizing Photons from the Galaxy
The Magellanic Stream and several high velocity clouds have now been detected
in optical line emission. The observed emission measures and kinematics are
most plausibly explained by photoionization due to hot, young stars in the
Galactic disk. The highly favorable orientation of the Stream allows an
unambiguous determination of the fraction of ionizing photons, F_esc, which
escape the disk. We have modelled the production and transport of ionizing
photons through an opaque interstellar medium. Normalization to the Stream
detections requires F_esc = 6%, in reasonable agreement with the flux required
to ionize the Reynolds layer. Neither shock heating nor emission within a hot
Galactic corona can be important in producing the observed H-alpha emission. If
such a large escape fraction is typical of L_* galaxies, star-forming systems
dominate the extragalactic ionizing background. Within the context of this
model, both the three-dimensional orientation of the Stream and the distances
to high-velocity clouds can be determined by sensitive H-alpha observations.Comment: 4 pages; LaTeX2e, emulateapj.sty, apjfonts.sty; 4 encapsulated PS
figures. For correct labels, may need to print Fig. 3 separately due to psfig
limitation. Astrophysical Journal (Letters), accepte
Recommended from our members
The use of the Continuously Regenerating Trap (CRT<sup>TM</sup>) and SCRT<sup>TM</sup> Systems to meet future emissions legislation
The progressive tightening of particulate matter (PM) legislation presents challenges to the engine development and aftertreatment communities. The Continuously Regenerating Trap (CRTTM) has been developed to enable diesel engines to meet the proposed future legislation. This passive filter system combines an oxidation catalyst with a Diesel Particulate Filter (DPF); the filter traps the PM and the oxidation catalyst generates NO2 which combusts the trapped PM at substantially lower temperatures than is possible using oxygen.
This paper outlines the operating principle of the CRTTM, and describes the performance of the system. It has been shown that the very high PM conversions obtained with the CRTTM can enable even Euro 1 engines to meet the PM limits proposed for introduction in Europe in 2005. In addition, the system removes PM across the whole particle size range, including ultrafine particulates. These results will be discussed, as will in-field durability studies which have shown that the system is still capable of converting 90% of PM after very high mileage operation (up to 600,000 km).
In addition to requiring very high PM conversion, the proposed future legislation requires substantial reductions in NOx emissions form heavy duty diesel vehicles. To meet these challenges the SCRTTM has been developed. This combines the CRTTM with SCR (Selective Catalytic Reduction) technology, and enables very high simultaneous conversions of CO, HC, PM and NOx to be achieved. The SCRTTM system is described, and its operating characteristics are discussed. It has been shown that the SCRTTM can potentially meet the legislative limits proposed for introduction in Europe in 2008
Evolution of displacements and strains in sheared amorphous solids
The local deformation of two-dimensional Lennard-Jones glasses under imposed
shear strain is studied via computer simulations. Both the mean squared
displacement and mean squared strain rise linearly with the length of the
strain interval over which they are measured. However, the
increase in displacement does not represent single-particle diffusion. There
are long-range spatial correlations in displacement associated with slip lines
with an amplitude of order the particle size. Strong dependence on system size
is also observed. The probability distributions of displacement and strain are
very different. For small the distribution of displacement has
a plateau followed by an exponential tail. The distribution becomes Gaussian as
increases to about .03. The strain distributions consist of
sharp central peaks associated with elastic regions, and long exponential tails
associated with plastic regions. The latter persist to the largest studied.Comment: Submitted to J. Phys. Cond. Mat. special volume for PITP Conference
on Mechanical Behavior of Glassy Materials. 16 Pages, 8 figure
- …