11,099 research outputs found
Invalidity of Classes of Approximated Hall Effect Calculations
In this comment, I point out a number of approximated derivations for the
effective equation of motion, now been applied to d-wave superconductors by
Kopnin and Volovik are invalid. The major error in those approximated
derivations is the inappropriate use of the relaxation time approximation in
force-force correlation functions, or in force balance equations, or in similar
variations. This approximation is wrong and unnecessary.Comment: final version, minor changes, to appear in Phys. Rev. Let
Microscopic Oscillations in the Quantum Nucleation of Vortices Subject to Periodic Pinning Potential in a Thin Superconductor
We present a theory for the decay of a supercurrent through nucleation of
vortex-antivortex pairs in a two-dimensional superconductor in the presence of
dissipation and of a periodic pinning potential. Through a powerful quantum
electrodynamics formulation of the problem we show that the nucleation rate
develops oscillations in its current-density dependence which are connected to
the pinning periodicity. A remnant of the dissipation-driven localization
transition is present, and an estimate of the nucleation rate suggests that
these effects might be observable in real thin superconductors.Comment: REVTeX file, 4 pages in two-column mode, 1 Postscript figure, to
appear in Phys.Rev.B (Rapid Communications
Motion of Vacancies in a Pinned Vortex Lattice: Origin of the Hall Anomaly
Physical arguments are presented to show that the Hall anomaly is an effect
of the vortex many-body correlation rather than that of an individual vortex.
Quantitatively, the characteristic energy scale in the problem, the vortex
vacancy formation energy, is obtained for thin films. At low temperatures a
scaling relation between the Hall and longitudinal resistivities is found, with
the power depending on sample details. Near the superconducting transition
temperature and for small magnetic fields the Hall conductivity is found to be
proportional to the inverse of the magnetic field and to the quadratic of the
difference between the measured and the transition temperatures.Comment: minor change
From chemical Langevin equations to Fokker-Planck equation: application of Hodge decomposition and Klein-Kramers equation
The stochastic systems without detailed balance are common in various
chemical reaction systems, such as metabolic network systems. In studies of
these systems, the concept of potential landscape is useful. However, what are
the sufficient and necessary conditions of the existence of the potential
function is still an open problem. Use Hodge decomposition theorem in
differential form theory, we focus on the general chemical Langevin equations,
which reflect complex chemical reaction systems. We analysis the conditions for
the existence of potential landscape of the systems. By mapping the stochastic
differential equations to a Hamiltonian mechanical system, we obtain the
Fokker-Planck equation of the chemical reaction systems. The obtained
Fokker-Planck equation can be used in further studies of other steady
properties of complex chemical reaction systems, such as their steady state
entropies.Comment: 6 pages, 0 figure, submitted to J. Phys. A: Math. Theo
Internal Vortex Structure of a Trapped Spinor Bose-Einstein Condensate
The internal vortex structure of a trapped spin-1 Bose-Einstein condensate is
investigated. It is shown that it has a variety of configurations depending on,
in particular, the ratio of the relevant scattering lengths and the total
magnetization.Comment: replacement; minor grammatical corrections but with additional
figure
Stochastic Dynamical Structure (SDS) of Nonequilibrium Processes in the Absence of Detailed Balance. III: potential function in local stochastic dynamics and in steady state of Boltzmann-Gibbs type distribution function
From a logic point of view this is the third in the series to solve the
problem of absence of detailed balance. This paper will be denoted as SDS III.
The existence of a dynamical potential with both local and global meanings in
general nonequilibrium processes has been controversial. Following an earlier
explicit construction by one of us (Ao, J. Phys. {\bf A37}, L25 '04,
arXiv:0803.4356, referred to as SDS II), in the present paper we show
rigorously its existence for a generic class of situations in physical and
biological sciences. The local dynamical meaning of this potential function is
demonstrated via a special stochastic differential equation and its global
steady-state meaning via a novel and explicit form of Fokker-Planck equation,
the zero mass limit. We also give a procedure to obtain the special stochastic
differential equation for any given Fokker-Planck equation. No detailed balance
condition is required in our demonstration. For the first time we obtain here a
formula to describe the noise induced shift in drift force comparing to the
steady state distribution, a phenomenon extensively observed in numerical
studies. The comparison to two well known stochastic integration methods, Ito
and Stratonovich, are made ready. Such comparison was made elsewhere (Ao, Phys.
Life Rev. {\bf 2} (2005) 117. q-bio/0605020).Comment: latex. 13 page
Microscopic theory of vortex dynamics in homogeneous superconductors
Vortex dynamics in fermionic superfluids is carefully considered from the
microscopic point of view. Finite temperatures, as well as impurities, are
explicitly incorporated. To enable readers understand the physical
implications, macroscopic demonstrations based on thermodynamics and
fluctuations- dissipation theorems are constructed. For the first time a clear
summary and a critical review of previous results are given.Comment: Presentations are made more straightforward. A detailed presentation
that why the vortex friction is finite when the geometric phase exists, as
required by referees, though I think it is obviou
On carbon and oxygen isotope ratios in starburst galaxies: New data from NGC253 and Mrk231 and their implications
Using the IRAM 30-m telescope, CN and CO isotopologues have been measured
toward the central regions of the nearby starburst galaxy NGC253 and the
prototypical ultraluminous infrared galaxy Mrk231. In NGC253, the 12C/13C ratio
is 40+-10. Assuming that the ratio also holds for the CO emitting gas, this
yields 16O/18O = 145+-36 and 16O/17O = 1290+-365 and a 32S/34S ratio close to
that measured for the local interstellar medium (20-25). No indication for
vibrationally excited CN is found. Peak line intensity ratios between NGC253
and Mrk231 are ~100 for 12C16O and 12C18O J=1-0, while the ratio for 13C16O
J=1-0 is ~250. This and similar 13CO and C18O line intensities in the J=1-0 and
2-1 transitions of Mrk231 suggest 12C/13C ~ 100 and 16O/18O ~ 100, in agreement
with values obtained for the less evolved ultraluminous merger Arp220. Also
accounting for other extragalactic data, 12C/13C ratios appear to vary over a
full order of magnitude, from >100 in ultraluminous high redshift galaxies to
~100 in more local such galaxies to ~40 in weaker starbursts not undergoing a
large scale merger to 25 in the Central Molecular Zone of the Milky Way. With
12C being predominantly synthesized in massive stars, while 13C is mostly
ejected by longer lived lower mass stars at later times, this is qualitatively
consistent with our results of decreasing carbon isotope ratios with time and
rising metallicity. It is emphasized, however, that both infall of poorly
processed material, initiating a nuclear starburst, as well as the ejecta from
newly formed massive stars (in particular in case of a top-heavy stellar
initial mass function) can raise the carbon isotope ratio for a limited amount
of time.Comment: Accepted by Astronomy & Astrophysics, 6 figures, 4 table
Magnetization Relaxation via Quantum and Classical Vortex Motion in a Bose Glass Superconductor
I show that in Bose Glass superconductor with high and at low the
magnetization relaxation (S), dominated by quantum tunneling, is , which crosses over to the conventional classical rate at
higher and lower , with the crossover . I argue
that due to interactions between flux lines there exist three relaxation
regimes, depending on whether ,
corresponding to Strongly-pinned Bose Glass (SBG) with large , Mott
Insulator (MI) with vanishing S, and Weakly-pinned Bose Glass (WBG)
characterized by small . I discuss the effects of interactions on
and focus attention on the recent experiment which is consistently described by
the theory.Comment: 4 pages, self-unpacking uuencoded compressed postscript file with
figures already inside text; to appear in Phys. Rev. Lett.(1995
- …