8 research outputs found

    Long-term variability of drought indices in the Czech Lands and effects of external forcings and large-scale climate variability modes

    Get PDF
    While a considerable number of records document the temporal variability of droughts for central Europe, the understanding of its underlying causes remains limited. In this contribution, time series of three drought indices (Standardized Precipitation Index – SPI; Standardized Precipitation Evapotranspiration Index – SPEI; Palmer Drought Severity Index – PDSI) are analyzed with regard to mid- to long-term drought variability in the Czech Lands and its potential links to external forcings and internal climate variability modes over the 1501–2006 period. Employing instrumental and proxy-based data characterizing the external climate forcings (solar and volcanic activity, greenhouse gases) in parallel with series representing the activity of selected climate variability modes (El Niño–Southern Oscillation – ENSO; Atlantic Multidecadal Oscillation – AMO; Pacific Decadal Oscillation – PDO; North Atlantic Oscillation – NAO), regression and wavelet analyses were deployed to identify and quantify the temporal variability patterns of drought indices and similarity between individual signals. Aside from a strong connection to the NAO, temperatures in the AMO and (particularly) PDO regions were disclosed as one of the possible drivers of inter-decadal variability in the Czech drought regime. Colder and wetter episodes were found to coincide with increased volcanic activity, especially in summer, while no clear signature of solar activity was found. In addition to identification of the links themselves, their temporal stability and structure of their shared periodicities were investigated. The oscillations at periods of approximately 60–100 years were found to be potentially relevant in establishing the teleconnections affecting the long-term variability of central European droughts.</p

    Enhanced internal gravity wave activity and breaking over the northeastern Pacific–eastern Asian region

    No full text
    We have found a stratospheric area of anomalously low annual cycle amplitude and specific dynamics in the stratosphere over the northeastern Pacific–eastern Asia coastal region. Using GPS radio occultation density profiles from the Formosat Satellite Mission 3/Constellation Observing System for Meteorology, Ionosphere, and Climate (FORMOSAT-3/COSMIC), we have discovered an internal gravity wave (IGW) activity and breaking hotspot in this region. Conditions supporting orographic wave sourcing and propagation were found. Other possible sources of wave activity in this region are listed. <br><br> The reasons why this particular IGW activity hotspot was not discovered before as well as why the specific dynamics of this region have not been pointed out are discussed together with the weaknesses of using the mean potential energy as a wave activity proxy. Possible consequences of the specific dynamics in this region on the middle atmospheric dynamics and transport are outlined

    An analysis of the spatial distribution of approximate 8 years periodicity in NCEP/NCAR and ERA-40 temperature fields

    No full text
    In the presented paper, we describe an analysis of spatial patterns of the approximate 8 years cycle identified in the NCEP/NCAR and ERA-40 reanalyzed temperature series. The temperature series are examined by the pseudo-2D wavelet transform (p2D-WT) at 17 geopotential levels, ranging from 1000 hPa to 10 hPa. The results differ significantly for the NCEP/NCAR and for the ERA-40 temperature series. For the NCEP/NCAR dataset, oscillation of about 8 years is distinct over large areas at almost every analyzed level. At lower heights, the regions with significant presence of the periodicity are less compact and pronounced than at higher geopotential levels. The occurrence of the analyzed period is generally strongest in the equatorial and tropical areas. For the ERA-40 dataset, the approximate 8 years cycle is detected in substantially fewer grid points and the spatial patterns generally do not conform to the analysis of NCEP/NCAR series. These results indicate that a frequency analysis of the reanalysis datasets should only be interpreted after careful discussion and that the reliability (in the sense of frequency characteristics) of the reanalyzed temperature series still needs to be studied

    Analysis of internal gravity waves with GPS RO density profiles

    No full text
    GPS radio occultation (RO) data have proved to be a great tool for atmospheric monitoring and studies. In the past decade, they were frequently used for analyses of the internal gravity waves in the upper troposphere and lower stratosphere region. Atmospheric density is the first quantity of state gained in the retrieval process and is not burdened by additional assumptions. However, there are no studies elaborating in detail the utilization of GPS RO density profiles for gravity wave analyses. In this paper, we introduce a method for density background separation and a methodology for internal gravity wave analysis using the density profiles. Various background choices are discussed and the correspondence between analytical forms of the density and temperature background profiles is examined. In the stratosphere, a comparison between the power spectrum of normalized density and normalized dry temperature fluctuations confirms the suitability of the density profiles' utilization. In the height range of 8–40 km, results of the continuous wavelet transform are presented and discussed. Finally, the limits of our approach are discussed and the advantages of the density usage are listed

    Influence of the spatial distribution of gravity wave activity on the middle atmospheric dynamics

    No full text
    Analysing GPS radio occultation density profiles, we have recently pointed out a localised area of enhanced gravity wave (GW) activity and breaking in the lower stratosphere of the east Asian–northwestern Pacific (EA/NP) region. With a mechanistic model of the middle and upper atmosphere, experiments are performed to study the possible effect of such a localised GW breaking region on large-scale circulation and transport and, more generally, a possible influence of the spatial distribution of gravity wave activity on middle atmospheric dynamics.<br><br>The results indicate the important role of the spatial distribution of GW activity for polar vortex stability, formation of planetary waves and for the strength and structure of zonal-mean residual circulation. Furthermore, a possible effect of a zonally asymmetric GW breaking in the longitudinal variability of the Brewer–Dobson circulation is analysed. Finally, consequences of our results for a variety of research topics (e.g. sudden stratospheric warming, atmospheric blocking, teleconnection patterns and a compensation mechanism between resolved and unresolved drag) are discussed

    The regional impact of urban emissions on climate over central Europe: present and future emission perspectives

    No full text
    The regional climate model RegCM4.2 was coupled to the chemistry transport model CAMx, including two-way interactions, to evaluate the regional impact of urban emission from central European cities on climate for present-day (2001–2010) and future (2046–2055) periods, and for the future one only emission changes are considered. Short-lived non-CO2 emissions are considered and, for the future impact, only the emission changes are accounted for (the climate is kept “fixed”). The urban impact on climate is calculated with the annihilation approach in which two experiments are performed: one with all emissions included and one without urban emissions. The radiative impacts of non-CO2 primary and secondary formed pollutants are considered, namely ozone (O3), sulfates (PSO4), nitrates (PNO3), primary organic aerosol and primary elementary carbon (POA and PEC).The validation of the modelling system is limited to key climate parameters, near-surface temperature and precipitation. It shows that the model, in general, underestimates temperature and overestimates precipitation. We attribute this behaviour to an excess of cloudiness/water vapour present in the model atmosphere as a consequence of overpredicted evaporation from the surface.The impact on climate is characterised by statistically significant cooling of up to −0.02 and −0.04 K in winter (DJF) and summer (JJA), mainly over cities. We found that the main contributors to the cooling are the direct and indirect effects of the aerosols, while the ozone titration, calculated especially for DJF, plays rather a minor role. In accordance with the vertical extent of the urban-emission-induced aerosol perturbation, cooling dominates the first few model layers up to about 150 m in DJF and 1000 m in JJA. We found a clear diurnal cycle of the radiative impacts with maximum cooling just after noon (JJA) or later in afternoon (DJF). Furthermore, statistically significant decreases of surface radiation are modelled in accordance with the temperature decrease. The impact on the boundary layer height is small but statistically significant and decreases by 1 and 6 m in DJF and JJA respectively. We did not find any statistically significant impact on precipitation and wind speed. Regarding future emissions, the impacts are, in general, smaller as a consequence of smaller emissions, resulting in smaller urban-induced chemical perturbations.In overall, the study suggest that the non-CO2 emissions play rather a minor role in modulating regional climate over central Europe. Much more important is the direct climate impact of urban surfaces via the urban canopy meteorological effects as we showed earlier
    corecore