15,319 research outputs found
Periodically nonuniform sampling of bandpass signals
It is known that a continuous time signal x(i) with Fourier transform X(ν) band-limited to |ν|<Θ/2 can be reconstructed from its samples x(T0n) with T0=2π/Θ. In the case that X(ν) consists of two bands and is band-limited to ν0<|ν|<ν0 +Θ/2, successful reconstruction of x(t) from x(T0n) requires an additional condition on the band positions. When the two bands are not located properly, Kohlenberg showed that we can use two sets of uniform samples, x(2T0n) and x(2T0n+d1), with average sampling period T0, to recover x(t). Because two sets of uniform samples are employed, this sampling scheme is called Periodically Nonuniform Sampling of second order [PNS(2)]. In this paper, we show that PNS(2) can be generalized and applied to a wider class. Also, Periodically Nonuniform Sampling of Lth-order [PNS(L)] will be developed and used to recover a broader class of band-limited signal. Further generalizations will be made to the two-dimensional case and discrete time case
Linear phase cosine modulated maximally decimated filter banks with perfect reconstruction
We propose a novel way to design maximally decimated FIR cosine modulated filter banks, in which each analysis and synthesis filter has a linear phase. The system can be designed to have either the approximate reconstruction property (pseudo-QMF system) or perfect reconstruction property (PR system). In the PR case, the system is a paraunitary filter bank. As in earlier work on cosine modulated systems, all the analysis filters come from an FIR prototype filter. However, unlike in any of the previous designs, all but two of the analysis filters have a total bandwidth of 2π/M rather than π/M (where 2M is the number of channels in our notation). A simple interpretation is possible in terms of the complex (hypothetical) analytic signal corresponding to each bandpass subband.
The coding gain of the new system is comparable with that of a traditional M-channel system (rather than a 2M-channel system). This is primarily because there are typically two bandpass filters with the same passband support. Correspondingly, the cost of the system (in terms of complexity of implementation) is also comparable with that of an M-channel system. We also demonstrate that very good attenuation characteristics can be obtained with the new system
On the study of four-parallelogram filter banks
The most commonly used 2-D filter banks are separable filter banks, which can be obtained by cascading two 1-D filter banks in the form of a tree. The supports of the analysis and synthesis filters in the separable systems are unions of four rectangles. The natural nonseparable generalization of such supports are those that are unions of four parallelograms. We study four parallelogram filter banks, which is the class of 2-D filter banks in which the supports of the analysis and synthesis filters consist of four parallelograms. For a given a decimation matrix, there could be more than one possible configuration (the collection of passbands of the analysis filters). Various types of configuration are constructed for four-parallelogram filter banks. Conditions on the configurations are derived such that good design of analysis and synthesis filters are possible. We see that there is only one category of these filter banks. The configurations of four-parallelogram filter banks in this category can always be achieved by designing filter banks of low design cost
A Kaiser window approach for the design of prototype filters of cosine modulated filterbanks
The traditional designs for the prototype filters of cosine modulated filterbanks usually involve nonlinear optimizations. We propose limiting the search of the prototype filters to the class of filters obtained using Kaiser windows. The design process is reduced to the optimization of a single parameter. An example is given to show that very good designs can be obtained in spite of the limit of search
The Spin Stiffness and the Transverse Susceptibility of the Half-filled Hubbard Model
The spin stiffness and the transverse susceptibility of the square lattice half-filled Hubbard model are calculated as a
function of the Hubbard parameter ratio by series expansions around the
Ising limit. We find that the calculated spin-stiffness, transverse
susceptibility, and sublattice magnetization for the Hubbard model smoothly
approach the Heisenberg values for large . The results are compared for
different with RPA and other numerical studies.Comment: 9 Revtex pages, 3 Postscript figures, Europhys. Lett. in pres
New results on multidimensional Chinese remainder theorem
The Chinese remainder theorem (CRT) [McClellan and Rader 1979] has been well known for applications in fast DFT computations and computer arithmetic. Guessoum and Mersereau [1986] first made headway in extending the CRT to multidimensional (MD) nonseparable systems and showing its usefulness. The present letter generalize the result and present a more general form. This more general MDCRT is an exact counterpart of 1DCRT
Discrete multitone modulation with principal component filter banks
Discrete multitone (DMT) modulation is an attractive method for communication over a nonflat channel with possibly colored noise. The uniform discrete Fourier transform (DFT) filter bank and cosine modulated filter bank have in the past been used in this system because of low complexity. We show in this paper that principal component filter banks (PCFB) which are known to be optimal for data compression and denoising applications, are also optimal for a number of criteria in DMT modulation communication. For example, the PCFB of the effective channel noise power spectrum (noise psd weighted by the inverse of the channel gain) is optimal for DMT modulation in the sense of maximizing bit rate for fixed power and error probabilities. We also establish an optimality property of the PCFB when scalar prefilters and postfilters are used around the channel. The difference between the PCFB and a traditional filter bank such as the brickwall filter bank or DFT filter bank is significant for effective power spectra which depart considerably from monotonicity. The twisted pair channel with its bridged taps, next and fext noises, and AM interference, therefore appears to be a good candidate for the application of a PCFB. This is demonstrated with the help of numerical results for the case of the ADSL channel
- …