9,764 research outputs found

    Mesoscopic Superposition of States with Sub-Planck Structures in Phase Space

    Get PDF
    We propose a method using the dispersive interaction between atoms and a high quality cavity to realize the mesoscopic superposition of coherent states which would exhibit sub-Planck structures in phase space. In particular we focus on a superposition involving four coherent states. We show interesting interferences in the conditional measurements involving two atoms.Comment: 4-page 3-figur

    On the production mechanism of radio-pulses from large extensive air showers

    Get PDF
    None of the theories put forward so far to explain the radio emission from cosmic ray showers, has been successful in giving a satisfactory explanation for all the experimental data obtained from various laboratories over the globe. It is apprehended that emission mechanism at low and high frequencies may be quite different. This calls for new theoretical look into the phenomenon. Theoretical as well as the experimental results indicate that the frequency spectrum is rather flat in the frequency range (40 to 60 MHz. Above 80 MHz, the radio emission can be explained with the help of geomagnetic mechanism. But at very low frequency ( 10 MHz), mechanisms other than geomagnetic are involved

    The dyadic diffraction coefficient for a curved edge

    Get PDF
    A compact dyadic diffraction coefficient for electromagnetic waves obliquely incident on a curved edge formed by perfectly conducting curved or plane surfaces is obtained. This diffraction coefficent remains valid in the transition regions adjacent to shadow and reflection boundaries, where the diffraction coefficients of Keller's original theory fail. The method is on Keller's method of the canonical problem, which in this case is the perfectly conducting wedge illuminated by plane, cylindrical, conical, and spherical waves. When the proper ray fixed coordinate system is introduced, the dyadic diffraction coefficient for the wedge is found to be the sum of only two dyads, and it is shown that this is also true for the dyadic diffraction coefficients of higher order edges. One dyad contains the acoustic soft diffraction coefficient; the other dyad contains the acoustic hard diffraction coefficient. The expressions for the acoustic wedge diffraction coefficients contain Fresnel integrals, which ensure that the total field is continuous at shadow and reflection boundaries. The diffraction coefficients have the same form for the different types of edge illumination; only the arguments of the Fresnel integrals are different. Since diffraction is a local phenomenon, and locally the curved edge structure is wedge shaped, this result is readily extended to the curved edge

    Analysis of the EM scattering from arbitrary open-ended waveguide cavities using axial Gaussian Beam tracking

    Get PDF
    The electromagnetic (EM) scattering from a planar termination located inside relatively arbitrarily shaped open-ended waveguide cavities with smoothly curved interior walls is analyzed using a Gaussian Beam (GB) expansion of the incident plane wave fields in the open end. The cavities under consideration may contain perfectly-conducting interior walls with or without a thin layer of material coating, or the walls may be characterized by an impedance boundary condition. In the present approach, the GB's are tracked only to the termination of the waveguide cavity via beam reflections from interior waveguide cavity walls. The Gaussian beams are tracked approximately only along their beam axes; this approximation which remains valid for relatively well focussed beams assumes that an incident GB gives rise to a reflected GB with parameters related to the incident beam and the radius of curvature of the wall. It is found that this approximation breaks down for GB's which come close to grazing a convex surface and when the width of the incident beam is comparable to the radius of curvature of the surface. The expansion of the fields at the open end depend on the incidence angle only through the expansion coefficients, so the GB's need to be tracked through the waveguide cavity only once for a wide range of incidence angles. At the termination, the sum of all the GB's are integrated using a result developed from a generalized reciprocity principle, to give the fields scattered from the interior of the cavity. The rim edge at the open end of the cavity is assumed to be sharp and the external scattering from the rim is added separately using Geometrical Theory of Diffraction. The results based on the present approach are compared with solutions based on the hybrid asymptotic modal method. The agreement is found to be very good for cavities made up of planar surfaces, and also for cavities with curved surfaces which are not too long with respect to their width

    A high frequency analysis of electromagnetic plane wave scattering by perfectly-conducting semi-infinite parallel plate and rectangular waveguides with absorber coated inner walls

    Get PDF
    An approximate but sufficiently accurate high frequency solution which combines the uniform geometrical theory of diffraction (UTD) and the aperture integration (AI) method is developed for analyzing the problem of electromagnetic (EM) plane wave scattering by an open-ended, perfectly-conducting, semi-infinite hollow rectangular waveguide (or duct) with a thin, uniform layer of lossy or absorbing material on its inner wall, and with a planar termination inside. In addition, a high frequency solution for the EM scattering by a two dimensional (2-D), semi-infinite parallel plate waveguide with a absorber coating on the inner walls is also developed as a first step before analyzing the open-ended semi-infinite three dimensional (3-D) rectangular waveguide geometry. The total field scattered by the semi-infinite waveguide consists firstly of the fields scattered from the edges of the aperture at the open-end, and secondly of the fields which are coupled into the waveguide from the open-end and then reflected back from the interior termination to radiate out of the open-end. The first contribution to the scattered field can be found directly via the UTD ray method. The second contribution is found via the AI method which employs rays to describe the fields in the aperture that arrive there after reflecting from the interior termination. It is assumed that the direction of the incident plane wave and the direction of observation lie well inside the forward half space tht exists outside the half space containing the semi-infinite waveguide geometry. Also, the medium exterior to the waveguide is assumed to be free space
    corecore