56 research outputs found

    The classical limit for a class of quantum baker's maps

    Get PDF
    We show that the class of quantum baker's maps defined by Schack and Caves have the proper classical limit provided the number of momentum bits approaches infinity. This is done by deriving a semi-classical approximation to the coherent-state propagator.Comment: 18 pages, 5 figure

    Classical limit in terms of symbolic dynamics for the quantum baker's map

    Full text link
    We derive a simple closed form for the matrix elements of the quantum baker's map that shows that the map is an approximate shift in a symbolic representation based on discrete phase space. We use this result to give a formal proof that the quantum baker's map approaches a classical Bernoulli shift in the limit of a small effective Plank's constant.Comment: 12 pages, LaTex, typos correcte

    Development of high resolution Si strip detectors for experiments at high luminosity at the LHC

    No full text
    Recent studies indicate that good tracking near the interaction region in LHC experiments will be crucial to fully exploit the physics potential of this machine up to the highest luminosities. It is believed that Si strip detectors are among the best candidates to survive in the experimental environment imposed by the high energy, high luminosity and severe radiation levels expected. It is therefore proposed to perform a systematic study of the feasibility of using Si strip detectors and suitably designed front-end electronics for tracking in LHC experiments. Issues discussed here are possible physics applications, requirements and design characteristics for Si strip detectors and front-end electronics and cooling. An R&D programme for the coming two years is described
    corecore