1,613 research outputs found

    Interaction effects in assembly of magnetic nanoparticles

    Full text link
    A specific absorption rate of a dilute assembly of various random clusters of iron oxide nanoparticles in alternating magnetic field has been calculated using Landau- Lifshitz stochastic equation. This approach simultaneously takes into account both the presence of thermal fluctuations of the nanoparticle magnetic moments, and magneto-dipole interaction between the nanoparticles of the clusters. It is shown that for usual 3D clusters the intensity of magneto- dipole interaction is determined mainly by the cluster packing density eta = Np*V/Vcl, where Np is the average number of the particles in the cluster, V is the nanoparticle volume, and Vcl is the cluster volume. The area of the low frequency hysteresis loop and the assembly specific absorption rate have been found to be considerably reduced when the packing density of the clusters increases in the range of 0.005 < eta < 0.4. The dependence of the specific absorption rate on the mean nanoparticle diameter is retained with increase of eta, but becomes less pronounced. For fractal clusters of nanoparticles, which arise in biological media, in addition to considerable reduction of the absorption rate, the absorption maximum is shifted to smaller particle diameters. It is found also that the specific absorption rate of fractal clusters increases appreciably with increase of the thickness of nonmagnetic shells at the nanoparticle surfaces.Comment: The paper is accepted for Nanoscale Res. Let

    Thermal Evolution and Light Curves of Young Bare Strange Stars

    Get PDF
    The cooling of a young bare strange star is studied numerically by solving the equations of energy conservation and heat transport for both normal and superconducting strange quark matter inside the star. We show that the thermal luminosity from the strange star surface, due to both photon emission and e+e- pair production, may be orders of magnitude higher than the Eddington limit, for about one day for normal quark matter but possibly for up to a hundred years for superconducting quark matter, while the maximum of the photon spectrum is in hard X-rays with a mean energy of ~ 100 keV or even more. This differs both qualitatively and quantitatively from the photon emission from young neutron stars and provides a definite observational signature for bare strange stars. It is shown that the energy gap of superconducting strange quark matter may be estimated from the light curves if it is in the range from ~ 0.5 MeV to a few MeV.Comment: Ref [10] added and abstract shortened. 4 pages, 3 figures, revtex4. To be published in Phys. Rev. Letter

    Structure of the electrospheres of bare strange stars

    Get PDF
    We consider a thin (∼102−103\sim 10^2-10^3 fm) layer of electrons (the electrosphere) at the quark surface of a bare strange star, taking into account the surface effects at the boundary with the vacuum. The quark surface holds the electron layer by an extremely strong electric field, generated in the electrosphere to prevent the electrons from escaping to infinity by counterbalancing the degeneracy and thermal pressure. Because of the surface tension and depletion of ss quarks a very thin (a few fm) charged layer of quarks forms at the surface of the star. The formation of this layer modifies the structure of the electrosphere, by significantly changing the electric field and the density of the electrons, in comparison with the case when the surface effects are ignored. Some consequences of the modification of the electrosphere structure on the properties of strange stars are briefly discussed.Comment: 23 pages, 6 figures, to appear in Ap

    Comments on the paper ``Bare Quark Surfacees of Strange Stars and Electron-Positron Pair Emission''

    Full text link
    In a recent paper (Ushov, PRL, 80, 230, 1998), it has been claimed that the bare surface of a strange star can emit electron-positron pairs of luminosity \~10^{51} ergs/s for about 10s. If true, obviously, this mechanism may explain the origin of cosmic Gamma Ray Bursts. However, we point out that such a mechanism is does not work because (i) if pair production really occurs the supposed pre-existing supercritical electric field will be quenched and this discharge process may at best release ~10^{24} ergs of electromagnetic energy, and (ii) there is no way by which the trapped core thermal energy of few 10^{52} ergs can be transmitted electromagnetically on a time scale of ~10s or even on a much larger time scale. The only way the hot core can cool on a time scale of ~10 s or much shorter is by the well known process of emission of nu-antinu pairs.Comment: Final version accepted in Phy. Rev. Lett. Main conclusion that the mechanism by Usov does not work remains unchanged, [email protected]

    Structure of pair winds from compact objects with application to emission from bare strange stars

    Get PDF
    We present the results of numerical simulations of stationary, spherically outflowing, electron-positron pair winds, with total luminosities in the range 10^{34}- 10^{42} ergs/s. In the concrete example described here, the wind injection source is a hot, bare, strange star, predicted to be a powerful source of electron-positron pairs created by the Coulomb barrier at the quark surface. We find that photons dominate in the emerging emission, and the emerging photon spectrum is rather hard and differs substantially from the thermal spectrum expected from a neutron star with the same luminosity. This might help distinguish the putative bare strange stars from neutron stars.Comment: 4 pages, 6 figures, 1 table, added references, to appear in the proceedings of the conference "Isolated Neutron Stars: from the Surface to the Interior", London, UK, 24-28 April 200

    Evolution and stability of a magnetic vortex in small cylindrical ferromagnetic particle under applied field

    Full text link
    The energy of a displaced magnetic vortex in a cylindrical particle made of isotropic ferromagnetic material (magnetic dot) is calculated taking into account the magnetic dipolar and the exchange interactions. Under the simplifying assumption of small dot thickness the closed-form expressions for the dot energy is written in a non-perturbative way as a function of the coordinate of the vortex center. Then, the process of losing the stability of the vortex under the influence of the externally applied magnetic field is considered. The field destabilizing the vortex as well as the field when the vortex energy is equal to the energy of a uniformly magnetized state are calculated and presented as a function of dot geometry. The results (containing no adjustable parameters) are compared to the recent experiment and are in good agreement.Comment: 4 pages, 2 figures, RevTe

    Photon emission from bare quark stars

    Full text link
    We investigate the photon emission from the electrosphere of a quark star. It is shown that at temperatures T\sim 0.1-1 MeV the dominating mechanism is the bremsstrahlung due to bending of electron trajectories in the mean Coulomb field of the electrosphere. The radiated energy for this mechanism is much larger than that for the Bethe-Heitler bremsstrahlung. The energy flux from the mean field bremsstrahlung exceeds the one from the tunnel e^{+}e^{-} pair creation as well. We demonstrate that the LPM suppression of the photon emission is negligible.Comment: 35 pages, 5 figure
    • …
    corecore