416 research outputs found

    Prominence and Control: The Weighted Rich-Club Effect

    Get PDF
    Published in Physical Review Letters PRL 101, 168702 (2008)http://link.aps.org/doi/10.1103/PhysRevLett.101.168702. Copyright American Physical Society (APS).Publisher's note: Erratum in Phys Rev Lett. 2008 Oct 31;101(18):189903 http://link.aps.org/doi/10.1103/PhysRevLett.101.18990

    Estimating and controlling the traffic Impact of a collaborative P2P system

    Get PDF
    Nowadays, P2P applications are commonly used in the Internet being an important paradigm for the development of distinct services. However, the dissemination of P2P applications also entails some important challenges that should be carefully addressed. In particular, some of the important coexistence problems existing between P2P applications and Internet Service Providers (ISPs) are mainly motivated by the inherent P2P dynamics which cause traffic to scatter across the network links in an unforeseeable way. In this context, this work proposes a collaborative framework of a Bit- Torrent like system. Using the proposed framework and based on the exchange of valuable information between the application and network levels, some novel techniques are proposed allowing to estimate and control the traffic impact that the P2P system will have on the links of the underlying network infrastructure. Both the framework and the presented techniques were tested resorting to simulation. The results clearly corroborate the viability and effectiveness of the formulated methods

    Clones in Graphs

    Full text link
    Finding structural similarities in graph data, like social networks, is a far-ranging task in data mining and knowledge discovery. A (conceptually) simple reduction would be to compute the automorphism group of a graph. However, this approach is ineffective in data mining since real world data does not exhibit enough structural regularity. Here we step in with a novel approach based on mappings that preserve the maximal cliques. For this we exploit the well known correspondence between bipartite graphs and the data structure formal context (G,M,I)(G,M,I) from Formal Concept Analysis. From there we utilize the notion of clone items. The investigation of these is still an open problem to which we add new insights with this work. Furthermore, we produce a substantial experimental investigation of real world data. We conclude with demonstrating the generalization of clone items to permutations.Comment: 11 pages, 2 figures, 1 tabl

    Internal combustion engine sensor network analysis using graph modeling

    Get PDF
    In recent years there has been a rapid development in technologies for smart monitoring applied to many different areas (e.g. building automation, photovoltaic systems, etc.). An intelligent monitoring system employs multiple sensors distributed within a network to extract useful information for decision-making. The management and the analysis of the raw data derived from the sensor network includes a number of specific challenges still unresolved, related to the different communication standards, the heterogeneous structure and the huge volume of data. In this paper we propose to apply a method based on complex network theory, to evaluate the performance of an Internal Combustion Engine. Data are gathered from the OBD sensor subset and from the emission analyzer. The method provides for the graph modeling of the sensor network, where the nodes are represented by the sensors and the edge are evaluated with non-linear statistical correlation functions applied to the time series pairs. The resulting functional graph is then analyzed with the topological metrics of the network, to define characteristic proprieties representing useful indicator for the maintenance and diagnosis

    Hydrologic Controls on Water Chemistry and Microbial Activity in a Small Coastal Plain Stream

    Get PDF
    Proceedings of the 2003 Georgia Water Resources Conference, held April 23-24, 2003, at the University of Georgia.Relationships between water chemistry, microbial activity, and hydrology were examined in Chickasawhatchee Creek, a small coastal plain stream in southwestern Georgia. Microbial activity in the creek was determined by measurement of water-column respiration rates and growth-limiting substrates through oxygen consumption experiments. Water chemistry parameters (nitrate-N, soluble reactive phosphate, dissolved organic and inorganic carbon, major cation species) were measured in order to evaluate introduction and removal of various compounds and to identify ground water contributions. Results indicated substantial differences in water chemistry between the upstream and downstream reaches that were related to streamflow variation. During low flow periods, the upper reach of the creek was regulated by surface runoff while groundwater inflow played a more important role in the lower reach. Conversely, during periods of high flow, surface water runoff dictated streamflow for the entire system. There is strong evidence that dissolved organic carbon (DOC) always served as the growth-limiting substrate, and that DOC concentrations varied based on dilution by low-DOC groundwater. However, there was no correlation between measurements of water-column respiration and dissolved organic carbon

    The Parameterized Complexity of Centrality Improvement in Networks

    Full text link
    The centrality of a vertex v in a network intuitively captures how important v is for communication in the network. The task of improving the centrality of a vertex has many applications, as a higher centrality often implies a larger impact on the network or less transportation or administration cost. In this work we study the parameterized complexity of the NP-complete problems Closeness Improvement and Betweenness Improvement in which we ask to improve a given vertex' closeness or betweenness centrality by a given amount through adding a given number of edges to the network. Herein, the closeness of a vertex v sums the multiplicative inverses of distances of other vertices to v and the betweenness sums for each pair of vertices the fraction of shortest paths going through v. Unfortunately, for the natural parameter "number of edges to add" we obtain hardness results, even in rather restricted cases. On the positive side, we also give an island of tractability for the parameter measuring the vertex deletion distance to cluster graphs

    Safety and Pharmacokinetics of Multiple Doses of Intravenous Ofloxacin in Healthy Volunteers

    Get PDF
    The safety and pharmacokinetics of ofloxacin in 48 healthy male volunteers were studied in a two-center, randomized, double-blind, placebo-controlled study. Ofloxacin (200 or 400 mg) or placebo was administered as 1-h infusions every 12 h for 7 days. Plasma ofloxacin concentrations were measured by high-performance liquid chromatography. Mean harmonic half-lives ranged from 4.28 to 4.98 h in the 200-mg dosing group and from 5.06 to 6.67 h in the 400-mg dosing group. Intragroup comparisons of trough plasma concentration-versus-time data from study days 2 through 7 revealed that steady state was achieved by day 2 of both multiple-dose regimens. Intergroup comparisons of mean harmonic half-lives, the areas under the concentration-time curve from 0 to 12 and 0 to 60 h, clearance, and apparent volume of distribution (area method) revealed that the pharmacokinetics of ofloxacin are dose independent. Both ofloxacin dosage regimens appeared to be reasonably well tolerated. The two dosage regimens of ofloxacin, 200 or 400 mg every 12 h, appear to be safe and provide serum drug concentrations in excess of the MICs for most susceptible pathogens over the entire dosing interval

    Controls on the composition and lability of dissolved organic matter in Siberia's Kolyma River basin

    Get PDF
    High-latitude northern rivers export globally significant quantities of dissolved organic carbon (DOC) to the Arctic Ocean. Climate change, and its associated impacts on hydrology and potential mobilization of ancient organic matter from permafrost, is likely to modify the flux, composition, and thus biogeochemical cycling and fate of exported DOC in the Arctic. This study examined DOC concentration and the composition of dissolved organic matter (DOM) across the hydrograph in Siberia's Kolyma River, with a particular focus on the spring freshet period when the majority of the annual DOC load is exported. The composition of DOM within the Kolyma basin was characterized using absorbance-derived measurements (absorbance coefficienta330, specific UV absorbance (SUVA254), and spectral slope ratio SR) and fluorescence spectroscopy (fluorescence index and excitation-emission matrices (EEMs)), including parallel factor analyses of EEMs. Increased surface runoff during the spring freshet led to DOM optical properties indicative of terrestrial soil inputs with high humic-like fluorescence, SUVA254, and low SRand fluorescence index (FI). Under-ice waters, in contrast, displayed opposing trends in optical properties representing less aromatic, lower molecular weight DOM. We demonstrate that substantial losses of DOC can occur via biological (∼30% over 28 days) and photochemical pathways (>29% over 14 days), particularly in samples collected during the spring freshet. The emerging view is therefore that of a more dynamic and labile carbon pool than previously thought, where DOM composition plays a fundamental role in controlling the fate and removal of DOC at a pan-Arctic scale

    Global clustering coefficient in scale-free networks

    Full text link
    In this paper, we analyze the behavior of the global clustering coefficient in scale free graphs. We are especially interested in the case of degree distribution with an infinite variance, since such degree distribution is usually observed in real-world networks of diverse nature. There are two common definitions of the clustering coefficient of a graph: global clustering and average local clustering. It is widely believed that in real networks both clustering coefficients tend to some positive constant as the networks grow. There are several models for which the average local clustering coefficient tends to a positive constant. On the other hand, there are no models of scale-free networks with an infinite variance of degree distribution and with a constant global clustering. In this paper we prove that if the degree distribution obeys the power law with an infinite variance, then the global clustering coefficient tends to zero with high probability as the size of a graph grows

    Lignin biomarkers as tracers of mercury sources in lakes water column

    Get PDF
    This study presents the role of specific terrigenous organic compounds as important vectors of mercury (Hg) transported from watersheds to lakes of the Canadian boreal forest. In order to differentiate the autochthonous from the allochthonous organic matter (OM), lignin derived biomarker signatures [Lambda, S/V, C/V, P/(V ? S), 3,5-Bd/V and (Ad/Al)v] were used. Since lignin is exclusively produced by terrigenous plants, this approach can give a non equivocal picture of the watershed inputs to the lakes. Moreover, it allows a characterization of the source of OM and its state of degradation. The water column of six lakes from the Canadian Shield was sampled monthly between June and September 2005. Lake total dissolved Hg concentrations and Lambda were positively correlated, meaning that Hg and ligneous inputs are linked (dissolved OM r2 = 0.62, p\0.0001; particulate OM r2 = 0.76, p\0.0001). Ratios of P/(V ? S) and 3,5-Bd/V from both dissolved OM and particulate OM of the water column suggest an inverse relationship between the progressive state of pedogenesis and maturation of the OM in soil before entering the lake, and the Hg concentrations in the water column. No relation was found between Hg levels in the lakes and the watershed flora composition—angiosperm versus gymnosperm or woody versus non-woody compounds. This study has significant implications for watershed management of ecosystems since limiting fresh terrestrial OM inputs should reduce Hg inputs to the aquatic systems. This is particularly the case for largescale land-use impacts, such as deforestation, agriculture and urbanization, associated to large quantities of soil OM being transferred to aquatic systems
    corecore