6 research outputs found

    Coarsening on percolation clusters: out-of-equilibrium dynamics versus non linear response

    Full text link
    We analyze the violations of linear fluctuation-dissipation theorem (FDT) in the coarsening dynamics of the antiferromagnetic Ising model on percolation clusters in two dimensions. The equilibrium magnetic response is shown to be non linear for magnetic fields of the order of the inverse square root of the number of sites. Two extreme regimes can be identified in the thermoremanent magnetization: (i) linear response and out-of-equilibrium relaxation for small waiting times (ii) non linear response and equilibrium relaxation for large waiting times. The function X(C)X(C) characterizing the deviations from linear FDT cross-overs from unity at short times to a finite positive value for longer times, with the same qualitative behavior whatever the waiting time. We show that the coarsening dynamics on percolation clusters exhibits stronger long-term memory than usual euclidian coarsening.Comment: 17 pages, 10 figure

    Time decay of the remanent magnetization in the ±J\pm J spin glass model at T=0

    Full text link
    Using the zero-temperature Metropolis dynamics, the time decay of the remanent magnetization in the ±J\pm J Edward-Anderson spin glass model with a uniform random distribution of ferromagnetic and antiferromagnetic interactions has been investigated. Starting from the saturation, the magnetization per spin mm reveals a slow decrease with time, which can be approximated by a power law:m(t)=m∞+(ta0)a1m(t)=m_{\infty}+ ({t\over a_{0}})^{a_{1}}, a1<0a_{1} < 0. Moreover, its relaxation does not lead it into one of the ground states, and therefore the system is trapped in metastable isoenergetic microstates remaining magnetized. Such behaviour is discussed in terms of a random walk the system performs on its available configuration space.Comment: 9 pages, 3 figure

    How glasses explore configuration space

    Full text link
    We review a statistical picture of the glassy state derived from the analysis of the off-equilibrium fluctuation-dissipation relations. We define an ultra-long time limit where ``one time quantities'' are close to equilibrium while response and correlation can still display aging. In this limit it is possible to relate the fluctuation-response relation to static breaking of ergodicity. The resulting picture suggests that even far from that limit, the fluctuation-dissipation ratio relates to the rate of growth of the configurational entropy with free-energy density.Comment: To appear in the proceedings of the "3rd workshop on non-equilibrium phenomena in supercooled fluids, glasses and amorphous materials" Pisa 22-27 September 200
    corecore