5,736 research outputs found
Charge and spin fractionalization in strongly correlated topological insulators
We construct an effective topological Landau-Ginzburg theory that describes
general SU(2) incompressible quantum liquids of strongly correlated particles
in two spatial dimensions. This theory characterizes the fractionalization of
quasiparticle quantum numbers and statistics in relation to the topological
ground-state symmetries, and generalizes the Chern-Simons, BF and hierarchical
effective gauge theories to an arbitrary representation of the SU(2) symmetry
group. Our main focus are fractional topological insulators with time-reversal
symmetry, which are treated as generalizations of the SU(2) quantum Hall
effect.Comment: 8 pages, published versio
Pair density wave instability and Cooper pair insulators in gapped fermion systems
By analyzing simple models of fermions in lattice potentials we argue that
the zero-temperature pairing instability of any ideal band-insulator occurs at
a finite momentum. The resulting supersolid state is known as "pair density
wave". The pairing momentum at the onset of instability is generally
incommensurate as a result of phase-space restrictions and relative strengths
of interband and intraband pairing. However, commensurate pairing occurs in the
strong-coupling limit and becomes a Cooper-channel analogue of the
Halperin-Rice exciton condensation instability in indirect bandgap
semiconductors. The exceptional sensitivity of incommensurate pairing to
quantum fluctuations can lead to a strongly-correlated insulating regime and a
non-BCS transition, even in the case of weak coupling as shown by an exact
renormalization group analysis.Comment: Proceedings article for SCES 2010. To appear in Journal of Physics:
Conference Serie
- …